Loading…

Survey calibration for causal inference: a simple method to balance covariate distributions

This paper proposes a~simple, yet powerful, method for balancing distributions of covariates for causal inference based on observational studies. The method makes it possible to balance an arbitrary number of quantiles (e.g., medians, quartiles, or deciles) together with means if necessary. The prop...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2024-03
Main Author: Beręsewicz, Maciej
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper proposes a~simple, yet powerful, method for balancing distributions of covariates for causal inference based on observational studies. The method makes it possible to balance an arbitrary number of quantiles (e.g., medians, quartiles, or deciles) together with means if necessary. The proposed approach is based on the theory of calibration estimators (Deville and S\"arndal 1992), in particular, calibration estimators for quantiles, proposed by Harms and Duchesne (2006). The method does not require numerical integration, kernel density estimation or assumptions about the distributions. Valid estimates can be obtained by drawing on existing asymptotic theory. An~illustrative example of the proposed approach is presented for the entropy balancing method and the covariate balancing propensity score method. Results of a~simulation study indicate that the method efficiently estimates average treatment effects on the treated (ATT), the average treatment effect (ATE), the quantile treatment effect on the treated (QTT) and the quantile treatment effect (QTE), especially in the presence of non-linearity and mis-specification of the models. The proposed approach can be further generalized to other designs (e.g. multi-category, continuous) or methods (e.g. synthetic control method). An open source software implementing proposed methods is available.
ISSN:2331-8422