Loading…
Towards Safer Operations: An Expert-involved Dataset of High-Pressure Gas Incidents for Preventing Future Failures
This paper introduces a new IncidentAI dataset for safety prevention. Different from prior corpora that usually contain a single task, our dataset comprises three tasks: named entity recognition, cause-effect extraction, and information retrieval. The dataset is annotated by domain experts who have...
Saved in:
Published in: | arXiv.org 2023-10 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Inoue, Shumpei Minh-Tien Nguyen Mizokuchi, Hiroki Nguyen, Tuan-Anh D Nguyen, Huu-Hiep Dung Tien Le |
description | This paper introduces a new IncidentAI dataset for safety prevention. Different from prior corpora that usually contain a single task, our dataset comprises three tasks: named entity recognition, cause-effect extraction, and information retrieval. The dataset is annotated by domain experts who have at least six years of practical experience as high-pressure gas conservation managers. We validate the contribution of the dataset in the scenario of safety prevention. Preliminary results on the three tasks show that NLP techniques are beneficial for analyzing incident reports to prevent future failures. The dataset facilitates future research in NLP and incident management communities. The access to the dataset is also provided (the IncidentAI dataset is available at: https://github.com/Cinnamon/incident-ai-dataset). |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2878920118</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2878920118</sourcerecordid><originalsourceid>FETCH-proquest_journals_28789201183</originalsourceid><addsrcrecordid>eNqNikEKwjAQAIMgWNQ_LHgutKna6k3UqicFvUuw25pSEt1Nq883gg_wNAwzPRHIJInDbCrlQIyZ6yiK5DyVs1kSCLrYl6KC4axKJDg-kJTT1vASVga2b-8u1KazTYcFbJRTjA5sCXtd3cMTIXNLCDvFcDA3XaBxDKUl8Knzok0Feeu-T65048kj0S9Vwzj-cSgm-fay3ocPss8W2V1r25Lx6SqzNFvIKI6z5L_rA0y2S10</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2878920118</pqid></control><display><type>article</type><title>Towards Safer Operations: An Expert-involved Dataset of High-Pressure Gas Incidents for Preventing Future Failures</title><source>Publicly Available Content (ProQuest)</source><creator>Inoue, Shumpei ; Minh-Tien Nguyen ; Mizokuchi, Hiroki ; Nguyen, Tuan-Anh D ; Nguyen, Huu-Hiep ; Dung Tien Le</creator><creatorcontrib>Inoue, Shumpei ; Minh-Tien Nguyen ; Mizokuchi, Hiroki ; Nguyen, Tuan-Anh D ; Nguyen, Huu-Hiep ; Dung Tien Le</creatorcontrib><description>This paper introduces a new IncidentAI dataset for safety prevention. Different from prior corpora that usually contain a single task, our dataset comprises three tasks: named entity recognition, cause-effect extraction, and information retrieval. The dataset is annotated by domain experts who have at least six years of practical experience as high-pressure gas conservation managers. We validate the contribution of the dataset in the scenario of safety prevention. Preliminary results on the three tasks show that NLP techniques are beneficial for analyzing incident reports to prevent future failures. The dataset facilitates future research in NLP and incident management communities. The access to the dataset is also provided (the IncidentAI dataset is available at: https://github.com/Cinnamon/incident-ai-dataset).</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Datasets ; High pressure ; Information retrieval ; Safety</subject><ispartof>arXiv.org, 2023-10</ispartof><rights>2023. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2878920118?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>777,781,25734,36993,44571</link.rule.ids></links><search><creatorcontrib>Inoue, Shumpei</creatorcontrib><creatorcontrib>Minh-Tien Nguyen</creatorcontrib><creatorcontrib>Mizokuchi, Hiroki</creatorcontrib><creatorcontrib>Nguyen, Tuan-Anh D</creatorcontrib><creatorcontrib>Nguyen, Huu-Hiep</creatorcontrib><creatorcontrib>Dung Tien Le</creatorcontrib><title>Towards Safer Operations: An Expert-involved Dataset of High-Pressure Gas Incidents for Preventing Future Failures</title><title>arXiv.org</title><description>This paper introduces a new IncidentAI dataset for safety prevention. Different from prior corpora that usually contain a single task, our dataset comprises three tasks: named entity recognition, cause-effect extraction, and information retrieval. The dataset is annotated by domain experts who have at least six years of practical experience as high-pressure gas conservation managers. We validate the contribution of the dataset in the scenario of safety prevention. Preliminary results on the three tasks show that NLP techniques are beneficial for analyzing incident reports to prevent future failures. The dataset facilitates future research in NLP and incident management communities. The access to the dataset is also provided (the IncidentAI dataset is available at: https://github.com/Cinnamon/incident-ai-dataset).</description><subject>Datasets</subject><subject>High pressure</subject><subject>Information retrieval</subject><subject>Safety</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNikEKwjAQAIMgWNQ_LHgutKna6k3UqicFvUuw25pSEt1Nq883gg_wNAwzPRHIJInDbCrlQIyZ6yiK5DyVs1kSCLrYl6KC4axKJDg-kJTT1vASVga2b-8u1KazTYcFbJRTjA5sCXtd3cMTIXNLCDvFcDA3XaBxDKUl8Knzok0Feeu-T65048kj0S9Vwzj-cSgm-fay3ocPss8W2V1r25Lx6SqzNFvIKI6z5L_rA0y2S10</recordid><startdate>20231023</startdate><enddate>20231023</enddate><creator>Inoue, Shumpei</creator><creator>Minh-Tien Nguyen</creator><creator>Mizokuchi, Hiroki</creator><creator>Nguyen, Tuan-Anh D</creator><creator>Nguyen, Huu-Hiep</creator><creator>Dung Tien Le</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20231023</creationdate><title>Towards Safer Operations: An Expert-involved Dataset of High-Pressure Gas Incidents for Preventing Future Failures</title><author>Inoue, Shumpei ; Minh-Tien Nguyen ; Mizokuchi, Hiroki ; Nguyen, Tuan-Anh D ; Nguyen, Huu-Hiep ; Dung Tien Le</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_28789201183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Datasets</topic><topic>High pressure</topic><topic>Information retrieval</topic><topic>Safety</topic><toplevel>online_resources</toplevel><creatorcontrib>Inoue, Shumpei</creatorcontrib><creatorcontrib>Minh-Tien Nguyen</creatorcontrib><creatorcontrib>Mizokuchi, Hiroki</creatorcontrib><creatorcontrib>Nguyen, Tuan-Anh D</creatorcontrib><creatorcontrib>Nguyen, Huu-Hiep</creatorcontrib><creatorcontrib>Dung Tien Le</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Engineering Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Inoue, Shumpei</au><au>Minh-Tien Nguyen</au><au>Mizokuchi, Hiroki</au><au>Nguyen, Tuan-Anh D</au><au>Nguyen, Huu-Hiep</au><au>Dung Tien Le</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Towards Safer Operations: An Expert-involved Dataset of High-Pressure Gas Incidents for Preventing Future Failures</atitle><jtitle>arXiv.org</jtitle><date>2023-10-23</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>This paper introduces a new IncidentAI dataset for safety prevention. Different from prior corpora that usually contain a single task, our dataset comprises three tasks: named entity recognition, cause-effect extraction, and information retrieval. The dataset is annotated by domain experts who have at least six years of practical experience as high-pressure gas conservation managers. We validate the contribution of the dataset in the scenario of safety prevention. Preliminary results on the three tasks show that NLP techniques are beneficial for analyzing incident reports to prevent future failures. The dataset facilitates future research in NLP and incident management communities. The access to the dataset is also provided (the IncidentAI dataset is available at: https://github.com/Cinnamon/incident-ai-dataset).</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2023-10 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2878920118 |
source | Publicly Available Content (ProQuest) |
subjects | Datasets High pressure Information retrieval Safety |
title | Towards Safer Operations: An Expert-involved Dataset of High-Pressure Gas Incidents for Preventing Future Failures |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T15%3A54%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Towards%20Safer%20Operations:%20An%20Expert-involved%20Dataset%20of%20High-Pressure%20Gas%20Incidents%20for%20Preventing%20Future%20Failures&rft.jtitle=arXiv.org&rft.au=Inoue,%20Shumpei&rft.date=2023-10-23&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2878920118%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_28789201183%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2878920118&rft_id=info:pmid/&rfr_iscdi=true |