Loading…
Unforeseen advantage of looser focusing in vacuum laser acceleration
Acceleration of electrons in vacuum directly by intense laser fields, often termed vacuum laser acceleration (VLA), holds great promise for the creation of compact sources of high-charge, ultrashort, relativistic electron bunches. However, while the energy gain is expected to be higher with tighter...
Saved in:
Published in: | arXiv.org 2023-10 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Acceleration of electrons in vacuum directly by intense laser fields, often termed vacuum laser acceleration (VLA), holds great promise for the creation of compact sources of high-charge, ultrashort, relativistic electron bunches. However, while the energy gain is expected to be higher with tighter focusing (i.e. stronger electric field), this does not account for the reduced acceleration range, which is limited by diffraction. Here, we present the results of an experimental investigation of VLA, using tungsten nanotips driven by relativistic-intensity few-cycle laser pulses. We demonstrate the acceleration of relativistic electron beams with typical charge of 100s pC to 15 MeV energies. Two different focusing geometries (tight and loose, with f-numbers one and three respectively) produced comparable results, despite a factor of ten difference in the peak intensities, which is evidence for the importance of post-injection acceleration mechanisms around the focus. Our results are in good agreement with the results of full-scale, three-dimensional particle-in-cell simulations. |
---|---|
ISSN: | 2331-8422 |
DOI: | 10.48550/arxiv.2310.11817 |