Loading…

A Reprogrammable Graphene Nanoribbon-Based Logic Gate

In this article, taking into consideration the exceptional technological properties of a unique 2-D material, namely Graphene, we are envisioning its usage as the structure material of a non-back-gated re-programmable switching device. The proposed topology is analyzed in depth, not only by verifyin...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on nanotechnology 2023, Vol.22, p.684-695
Main Authors: Rallis, Konstantinos, Fyrigos, Iosif-Angelos, Dimitrakis, Panagiotis, Dimitrakopoulos, Giorgos, Karafyllidis, Ioannis, Rubio, Antonio, Sirakoulis, Georgios Ch
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c247t-997683fb2796975cd3b34bb784e2900752e5eccc2b2ecea3dd7ddb4c1b7fb9013
container_end_page 695
container_issue
container_start_page 684
container_title IEEE transactions on nanotechnology
container_volume 22
creator Rallis, Konstantinos
Fyrigos, Iosif-Angelos
Dimitrakis, Panagiotis
Dimitrakopoulos, Giorgos
Karafyllidis, Ioannis
Rubio, Antonio
Sirakoulis, Georgios Ch
description In this article, taking into consideration the exceptional technological properties of a unique 2-D material, namely Graphene, we are envisioning its usage as the structure material of a non-back-gated re-programmable switching device. The proposed topology is analyzed in depth, not only by verifying its operation and re-programmability as a 2-input XOR , 3-input XOR and 3-input Majority gate, but also by examining its computing performance in terms of area, delay and power dissipation. More specifically, we are utilizing L-shaped Graphene Nanoribbons (GNRs) to develop comb-shaped Graphene based switching devices. These devices are in position with effective programming through biasing to design any combinatorial circuit as resulting from the aforementioned universal set of Boolean gates. The resulting figures of merit regarding the area with a universal footprint of \text{2.53 nm}^{2} for every gate independently of the number of inputs, the propagation delay with 2.05\times {10^{-2}}\;\text{ps} and, last but not least, the power dissipation with only \text{10.204 nW} for the gates with greater number of inputs, are quite encouraging and promising. Moreover, the ability of the proposed topology to pave the way towards the implementation of basic circuits has been further investigated, by demonstrating an example of a 1-bit full adder cell and its sufficient operation arriving from the corresponding successful SPICE simulation results.
doi_str_mv 10.1109/TNANO.2023.3323397
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2879401953</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10275008</ieee_id><sourcerecordid>2879401953</sourcerecordid><originalsourceid>FETCH-LOGICAL-c247t-997683fb2796975cd3b34bb784e2900752e5eccc2b2ecea3dd7ddb4c1b7fb9013</originalsourceid><addsrcrecordid>eNpNkLFOwzAQhi0EEqXwAoghEnOKfRfH8VgqKEhRK6EisVm2cymp2qTY7cDbN6UdmO6G__vv9DF2L_hICK6fFrPxbD4CDjhCBEStLthA6EyknBfyst8l5qkA-XXNbmJccS5ULosBk-Pkg7ahWwa72Vi3pmQa7PabWkpmtu1C41zXps82UpWU3bLxydTu6JZd1XYd6e48h-zz9WUxeUvL-fR9Mi5TD5napVqrvMDagdK5VtJX6DBzThUZgeZcSSBJ3ntwQJ4sVpWqKpd54VTtNBc4ZI-n3v7Dnz3FnVl1-9D2Jw0USmdcaIl9Ck4pH7oYA9VmG5qNDb9GcHPUY_70mKMec9bTQw8nqCGifwAo2SvDA1wWYD8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2879401953</pqid></control><display><type>article</type><title>A Reprogrammable Graphene Nanoribbon-Based Logic Gate</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Rallis, Konstantinos ; Fyrigos, Iosif-Angelos ; Dimitrakis, Panagiotis ; Dimitrakopoulos, Giorgos ; Karafyllidis, Ioannis ; Rubio, Antonio ; Sirakoulis, Georgios Ch</creator><creatorcontrib>Rallis, Konstantinos ; Fyrigos, Iosif-Angelos ; Dimitrakis, Panagiotis ; Dimitrakopoulos, Giorgos ; Karafyllidis, Ioannis ; Rubio, Antonio ; Sirakoulis, Georgios Ch</creatorcontrib><description><![CDATA[In this article, taking into consideration the exceptional technological properties of a unique 2-D material, namely Graphene, we are envisioning its usage as the structure material of a non-back-gated re-programmable switching device. The proposed topology is analyzed in depth, not only by verifying its operation and re-programmability as a 2-input XOR , 3-input XOR and 3-input Majority gate, but also by examining its computing performance in terms of area, delay and power dissipation. More specifically, we are utilizing L-shaped Graphene Nanoribbons (GNRs) to develop comb-shaped Graphene based switching devices. These devices are in position with effective programming through biasing to design any combinatorial circuit as resulting from the aforementioned universal set of Boolean gates. The resulting figures of merit regarding the area with a universal footprint of <inline-formula><tex-math notation="LaTeX">\text{2.53 nm}^{2}</tex-math></inline-formula> for every gate independently of the number of inputs, the propagation delay with <inline-formula><tex-math notation="LaTeX">2.05\times {10^{-2}}\;\text{ps}</tex-math></inline-formula> and, last but not least, the power dissipation with only <inline-formula><tex-math notation="LaTeX">\text{10.204 nW}</tex-math></inline-formula> for the gates with greater number of inputs, are quite encouraging and promising. Moreover, the ability of the proposed topology to pave the way towards the implementation of basic circuits has been further investigated, by demonstrating an example of a 1-bit full adder cell and its sufficient operation arriving from the corresponding successful SPICE simulation results.]]></description><identifier>ISSN: 1536-125X</identifier><identifier>EISSN: 1941-0085</identifier><identifier>DOI: 10.1109/TNANO.2023.3323397</identifier><identifier>CODEN: ITNECU</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Circuit design ; Combinatorial analysis ; Energy dissipation ; Fabrication ; Figure of merit ; Gates (circuits) ; Graphene ; Logic circuits ; Logic gates ; nanoelectronic circuits ; nanoribbon transistors ; Nanoribbons ; Photonic band gap ; Switches ; Switching ; Topology ; Two dimensional materials</subject><ispartof>IEEE transactions on nanotechnology, 2023, Vol.22, p.684-695</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c247t-997683fb2796975cd3b34bb784e2900752e5eccc2b2ecea3dd7ddb4c1b7fb9013</cites><orcidid>0000-0003-0501-5554 ; 0000-0003-1625-1472 ; 0000-0003-2079-5480 ; 0000-0002-4941-0487 ; 0000-0001-8240-484X ; 0000-0001-8032-1725 ; 0000-0003-3688-7865</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10275008$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,4024,27923,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Rallis, Konstantinos</creatorcontrib><creatorcontrib>Fyrigos, Iosif-Angelos</creatorcontrib><creatorcontrib>Dimitrakis, Panagiotis</creatorcontrib><creatorcontrib>Dimitrakopoulos, Giorgos</creatorcontrib><creatorcontrib>Karafyllidis, Ioannis</creatorcontrib><creatorcontrib>Rubio, Antonio</creatorcontrib><creatorcontrib>Sirakoulis, Georgios Ch</creatorcontrib><title>A Reprogrammable Graphene Nanoribbon-Based Logic Gate</title><title>IEEE transactions on nanotechnology</title><addtitle>TNANO</addtitle><description><![CDATA[In this article, taking into consideration the exceptional technological properties of a unique 2-D material, namely Graphene, we are envisioning its usage as the structure material of a non-back-gated re-programmable switching device. The proposed topology is analyzed in depth, not only by verifying its operation and re-programmability as a 2-input XOR , 3-input XOR and 3-input Majority gate, but also by examining its computing performance in terms of area, delay and power dissipation. More specifically, we are utilizing L-shaped Graphene Nanoribbons (GNRs) to develop comb-shaped Graphene based switching devices. These devices are in position with effective programming through biasing to design any combinatorial circuit as resulting from the aforementioned universal set of Boolean gates. The resulting figures of merit regarding the area with a universal footprint of <inline-formula><tex-math notation="LaTeX">\text{2.53 nm}^{2}</tex-math></inline-formula> for every gate independently of the number of inputs, the propagation delay with <inline-formula><tex-math notation="LaTeX">2.05\times {10^{-2}}\;\text{ps}</tex-math></inline-formula> and, last but not least, the power dissipation with only <inline-formula><tex-math notation="LaTeX">\text{10.204 nW}</tex-math></inline-formula> for the gates with greater number of inputs, are quite encouraging and promising. Moreover, the ability of the proposed topology to pave the way towards the implementation of basic circuits has been further investigated, by demonstrating an example of a 1-bit full adder cell and its sufficient operation arriving from the corresponding successful SPICE simulation results.]]></description><subject>Circuit design</subject><subject>Combinatorial analysis</subject><subject>Energy dissipation</subject><subject>Fabrication</subject><subject>Figure of merit</subject><subject>Gates (circuits)</subject><subject>Graphene</subject><subject>Logic circuits</subject><subject>Logic gates</subject><subject>nanoelectronic circuits</subject><subject>nanoribbon transistors</subject><subject>Nanoribbons</subject><subject>Photonic band gap</subject><subject>Switches</subject><subject>Switching</subject><subject>Topology</subject><subject>Two dimensional materials</subject><issn>1536-125X</issn><issn>1941-0085</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpNkLFOwzAQhi0EEqXwAoghEnOKfRfH8VgqKEhRK6EisVm2cymp2qTY7cDbN6UdmO6G__vv9DF2L_hICK6fFrPxbD4CDjhCBEStLthA6EyknBfyst8l5qkA-XXNbmJccS5ULosBk-Pkg7ahWwa72Vi3pmQa7PabWkpmtu1C41zXps82UpWU3bLxydTu6JZd1XYd6e48h-zz9WUxeUvL-fR9Mi5TD5napVqrvMDagdK5VtJX6DBzThUZgeZcSSBJ3ntwQJ4sVpWqKpd54VTtNBc4ZI-n3v7Dnz3FnVl1-9D2Jw0USmdcaIl9Ck4pH7oYA9VmG5qNDb9GcHPUY_70mKMec9bTQw8nqCGifwAo2SvDA1wWYD8</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>Rallis, Konstantinos</creator><creator>Fyrigos, Iosif-Angelos</creator><creator>Dimitrakis, Panagiotis</creator><creator>Dimitrakopoulos, Giorgos</creator><creator>Karafyllidis, Ioannis</creator><creator>Rubio, Antonio</creator><creator>Sirakoulis, Georgios Ch</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-0501-5554</orcidid><orcidid>https://orcid.org/0000-0003-1625-1472</orcidid><orcidid>https://orcid.org/0000-0003-2079-5480</orcidid><orcidid>https://orcid.org/0000-0002-4941-0487</orcidid><orcidid>https://orcid.org/0000-0001-8240-484X</orcidid><orcidid>https://orcid.org/0000-0001-8032-1725</orcidid><orcidid>https://orcid.org/0000-0003-3688-7865</orcidid></search><sort><creationdate>2023</creationdate><title>A Reprogrammable Graphene Nanoribbon-Based Logic Gate</title><author>Rallis, Konstantinos ; Fyrigos, Iosif-Angelos ; Dimitrakis, Panagiotis ; Dimitrakopoulos, Giorgos ; Karafyllidis, Ioannis ; Rubio, Antonio ; Sirakoulis, Georgios Ch</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c247t-997683fb2796975cd3b34bb784e2900752e5eccc2b2ecea3dd7ddb4c1b7fb9013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Circuit design</topic><topic>Combinatorial analysis</topic><topic>Energy dissipation</topic><topic>Fabrication</topic><topic>Figure of merit</topic><topic>Gates (circuits)</topic><topic>Graphene</topic><topic>Logic circuits</topic><topic>Logic gates</topic><topic>nanoelectronic circuits</topic><topic>nanoribbon transistors</topic><topic>Nanoribbons</topic><topic>Photonic band gap</topic><topic>Switches</topic><topic>Switching</topic><topic>Topology</topic><topic>Two dimensional materials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rallis, Konstantinos</creatorcontrib><creatorcontrib>Fyrigos, Iosif-Angelos</creatorcontrib><creatorcontrib>Dimitrakis, Panagiotis</creatorcontrib><creatorcontrib>Dimitrakopoulos, Giorgos</creatorcontrib><creatorcontrib>Karafyllidis, Ioannis</creatorcontrib><creatorcontrib>Rubio, Antonio</creatorcontrib><creatorcontrib>Sirakoulis, Georgios Ch</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) Online</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on nanotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rallis, Konstantinos</au><au>Fyrigos, Iosif-Angelos</au><au>Dimitrakis, Panagiotis</au><au>Dimitrakopoulos, Giorgos</au><au>Karafyllidis, Ioannis</au><au>Rubio, Antonio</au><au>Sirakoulis, Georgios Ch</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Reprogrammable Graphene Nanoribbon-Based Logic Gate</atitle><jtitle>IEEE transactions on nanotechnology</jtitle><stitle>TNANO</stitle><date>2023</date><risdate>2023</risdate><volume>22</volume><spage>684</spage><epage>695</epage><pages>684-695</pages><issn>1536-125X</issn><eissn>1941-0085</eissn><coden>ITNECU</coden><abstract><![CDATA[In this article, taking into consideration the exceptional technological properties of a unique 2-D material, namely Graphene, we are envisioning its usage as the structure material of a non-back-gated re-programmable switching device. The proposed topology is analyzed in depth, not only by verifying its operation and re-programmability as a 2-input XOR , 3-input XOR and 3-input Majority gate, but also by examining its computing performance in terms of area, delay and power dissipation. More specifically, we are utilizing L-shaped Graphene Nanoribbons (GNRs) to develop comb-shaped Graphene based switching devices. These devices are in position with effective programming through biasing to design any combinatorial circuit as resulting from the aforementioned universal set of Boolean gates. The resulting figures of merit regarding the area with a universal footprint of <inline-formula><tex-math notation="LaTeX">\text{2.53 nm}^{2}</tex-math></inline-formula> for every gate independently of the number of inputs, the propagation delay with <inline-formula><tex-math notation="LaTeX">2.05\times {10^{-2}}\;\text{ps}</tex-math></inline-formula> and, last but not least, the power dissipation with only <inline-formula><tex-math notation="LaTeX">\text{10.204 nW}</tex-math></inline-formula> for the gates with greater number of inputs, are quite encouraging and promising. Moreover, the ability of the proposed topology to pave the way towards the implementation of basic circuits has been further investigated, by demonstrating an example of a 1-bit full adder cell and its sufficient operation arriving from the corresponding successful SPICE simulation results.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TNANO.2023.3323397</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-0501-5554</orcidid><orcidid>https://orcid.org/0000-0003-1625-1472</orcidid><orcidid>https://orcid.org/0000-0003-2079-5480</orcidid><orcidid>https://orcid.org/0000-0002-4941-0487</orcidid><orcidid>https://orcid.org/0000-0001-8240-484X</orcidid><orcidid>https://orcid.org/0000-0001-8032-1725</orcidid><orcidid>https://orcid.org/0000-0003-3688-7865</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1536-125X
ispartof IEEE transactions on nanotechnology, 2023, Vol.22, p.684-695
issn 1536-125X
1941-0085
language eng
recordid cdi_proquest_journals_2879401953
source IEEE Electronic Library (IEL) Journals
subjects Circuit design
Combinatorial analysis
Energy dissipation
Fabrication
Figure of merit
Gates (circuits)
Graphene
Logic circuits
Logic gates
nanoelectronic circuits
nanoribbon transistors
Nanoribbons
Photonic band gap
Switches
Switching
Topology
Two dimensional materials
title A Reprogrammable Graphene Nanoribbon-Based Logic Gate
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T09%3A14%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Reprogrammable%20Graphene%20Nanoribbon-Based%20Logic%20Gate&rft.jtitle=IEEE%20transactions%20on%20nanotechnology&rft.au=Rallis,%20Konstantinos&rft.date=2023&rft.volume=22&rft.spage=684&rft.epage=695&rft.pages=684-695&rft.issn=1536-125X&rft.eissn=1941-0085&rft.coden=ITNECU&rft_id=info:doi/10.1109/TNANO.2023.3323397&rft_dat=%3Cproquest_cross%3E2879401953%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c247t-997683fb2796975cd3b34bb784e2900752e5eccc2b2ecea3dd7ddb4c1b7fb9013%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2879401953&rft_id=info:pmid/&rft_ieee_id=10275008&rfr_iscdi=true