Loading…
A Reprogrammable Graphene Nanoribbon-Based Logic Gate
In this article, taking into consideration the exceptional technological properties of a unique 2-D material, namely Graphene, we are envisioning its usage as the structure material of a non-back-gated re-programmable switching device. The proposed topology is analyzed in depth, not only by verifyin...
Saved in:
Published in: | IEEE transactions on nanotechnology 2023, Vol.22, p.684-695 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c247t-997683fb2796975cd3b34bb784e2900752e5eccc2b2ecea3dd7ddb4c1b7fb9013 |
container_end_page | 695 |
container_issue | |
container_start_page | 684 |
container_title | IEEE transactions on nanotechnology |
container_volume | 22 |
creator | Rallis, Konstantinos Fyrigos, Iosif-Angelos Dimitrakis, Panagiotis Dimitrakopoulos, Giorgos Karafyllidis, Ioannis Rubio, Antonio Sirakoulis, Georgios Ch |
description | In this article, taking into consideration the exceptional technological properties of a unique 2-D material, namely Graphene, we are envisioning its usage as the structure material of a non-back-gated re-programmable switching device. The proposed topology is analyzed in depth, not only by verifying its operation and re-programmability as a 2-input XOR , 3-input XOR and 3-input Majority gate, but also by examining its computing performance in terms of area, delay and power dissipation. More specifically, we are utilizing L-shaped Graphene Nanoribbons (GNRs) to develop comb-shaped Graphene based switching devices. These devices are in position with effective programming through biasing to design any combinatorial circuit as resulting from the aforementioned universal set of Boolean gates. The resulting figures of merit regarding the area with a universal footprint of \text{2.53 nm}^{2} for every gate independently of the number of inputs, the propagation delay with 2.05\times {10^{-2}}\;\text{ps} and, last but not least, the power dissipation with only \text{10.204 nW} for the gates with greater number of inputs, are quite encouraging and promising. Moreover, the ability of the proposed topology to pave the way towards the implementation of basic circuits has been further investigated, by demonstrating an example of a 1-bit full adder cell and its sufficient operation arriving from the corresponding successful SPICE simulation results. |
doi_str_mv | 10.1109/TNANO.2023.3323397 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2879401953</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10275008</ieee_id><sourcerecordid>2879401953</sourcerecordid><originalsourceid>FETCH-LOGICAL-c247t-997683fb2796975cd3b34bb784e2900752e5eccc2b2ecea3dd7ddb4c1b7fb9013</originalsourceid><addsrcrecordid>eNpNkLFOwzAQhi0EEqXwAoghEnOKfRfH8VgqKEhRK6EisVm2cymp2qTY7cDbN6UdmO6G__vv9DF2L_hICK6fFrPxbD4CDjhCBEStLthA6EyknBfyst8l5qkA-XXNbmJccS5ULosBk-Pkg7ahWwa72Vi3pmQa7PabWkpmtu1C41zXps82UpWU3bLxydTu6JZd1XYd6e48h-zz9WUxeUvL-fR9Mi5TD5napVqrvMDagdK5VtJX6DBzThUZgeZcSSBJ3ntwQJ4sVpWqKpd54VTtNBc4ZI-n3v7Dnz3FnVl1-9D2Jw0USmdcaIl9Ck4pH7oYA9VmG5qNDb9GcHPUY_70mKMec9bTQw8nqCGifwAo2SvDA1wWYD8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2879401953</pqid></control><display><type>article</type><title>A Reprogrammable Graphene Nanoribbon-Based Logic Gate</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Rallis, Konstantinos ; Fyrigos, Iosif-Angelos ; Dimitrakis, Panagiotis ; Dimitrakopoulos, Giorgos ; Karafyllidis, Ioannis ; Rubio, Antonio ; Sirakoulis, Georgios Ch</creator><creatorcontrib>Rallis, Konstantinos ; Fyrigos, Iosif-Angelos ; Dimitrakis, Panagiotis ; Dimitrakopoulos, Giorgos ; Karafyllidis, Ioannis ; Rubio, Antonio ; Sirakoulis, Georgios Ch</creatorcontrib><description><![CDATA[In this article, taking into consideration the exceptional technological properties of a unique 2-D material, namely Graphene, we are envisioning its usage as the structure material of a non-back-gated re-programmable switching device. The proposed topology is analyzed in depth, not only by verifying its operation and re-programmability as a 2-input XOR , 3-input XOR and 3-input Majority gate, but also by examining its computing performance in terms of area, delay and power dissipation. More specifically, we are utilizing L-shaped Graphene Nanoribbons (GNRs) to develop comb-shaped Graphene based switching devices. These devices are in position with effective programming through biasing to design any combinatorial circuit as resulting from the aforementioned universal set of Boolean gates. The resulting figures of merit regarding the area with a universal footprint of <inline-formula><tex-math notation="LaTeX">\text{2.53 nm}^{2}</tex-math></inline-formula> for every gate independently of the number of inputs, the propagation delay with <inline-formula><tex-math notation="LaTeX">2.05\times {10^{-2}}\;\text{ps}</tex-math></inline-formula> and, last but not least, the power dissipation with only <inline-formula><tex-math notation="LaTeX">\text{10.204 nW}</tex-math></inline-formula> for the gates with greater number of inputs, are quite encouraging and promising. Moreover, the ability of the proposed topology to pave the way towards the implementation of basic circuits has been further investigated, by demonstrating an example of a 1-bit full adder cell and its sufficient operation arriving from the corresponding successful SPICE simulation results.]]></description><identifier>ISSN: 1536-125X</identifier><identifier>EISSN: 1941-0085</identifier><identifier>DOI: 10.1109/TNANO.2023.3323397</identifier><identifier>CODEN: ITNECU</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Circuit design ; Combinatorial analysis ; Energy dissipation ; Fabrication ; Figure of merit ; Gates (circuits) ; Graphene ; Logic circuits ; Logic gates ; nanoelectronic circuits ; nanoribbon transistors ; Nanoribbons ; Photonic band gap ; Switches ; Switching ; Topology ; Two dimensional materials</subject><ispartof>IEEE transactions on nanotechnology, 2023, Vol.22, p.684-695</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c247t-997683fb2796975cd3b34bb784e2900752e5eccc2b2ecea3dd7ddb4c1b7fb9013</cites><orcidid>0000-0003-0501-5554 ; 0000-0003-1625-1472 ; 0000-0003-2079-5480 ; 0000-0002-4941-0487 ; 0000-0001-8240-484X ; 0000-0001-8032-1725 ; 0000-0003-3688-7865</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10275008$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,4024,27923,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Rallis, Konstantinos</creatorcontrib><creatorcontrib>Fyrigos, Iosif-Angelos</creatorcontrib><creatorcontrib>Dimitrakis, Panagiotis</creatorcontrib><creatorcontrib>Dimitrakopoulos, Giorgos</creatorcontrib><creatorcontrib>Karafyllidis, Ioannis</creatorcontrib><creatorcontrib>Rubio, Antonio</creatorcontrib><creatorcontrib>Sirakoulis, Georgios Ch</creatorcontrib><title>A Reprogrammable Graphene Nanoribbon-Based Logic Gate</title><title>IEEE transactions on nanotechnology</title><addtitle>TNANO</addtitle><description><![CDATA[In this article, taking into consideration the exceptional technological properties of a unique 2-D material, namely Graphene, we are envisioning its usage as the structure material of a non-back-gated re-programmable switching device. The proposed topology is analyzed in depth, not only by verifying its operation and re-programmability as a 2-input XOR , 3-input XOR and 3-input Majority gate, but also by examining its computing performance in terms of area, delay and power dissipation. More specifically, we are utilizing L-shaped Graphene Nanoribbons (GNRs) to develop comb-shaped Graphene based switching devices. These devices are in position with effective programming through biasing to design any combinatorial circuit as resulting from the aforementioned universal set of Boolean gates. The resulting figures of merit regarding the area with a universal footprint of <inline-formula><tex-math notation="LaTeX">\text{2.53 nm}^{2}</tex-math></inline-formula> for every gate independently of the number of inputs, the propagation delay with <inline-formula><tex-math notation="LaTeX">2.05\times {10^{-2}}\;\text{ps}</tex-math></inline-formula> and, last but not least, the power dissipation with only <inline-formula><tex-math notation="LaTeX">\text{10.204 nW}</tex-math></inline-formula> for the gates with greater number of inputs, are quite encouraging and promising. Moreover, the ability of the proposed topology to pave the way towards the implementation of basic circuits has been further investigated, by demonstrating an example of a 1-bit full adder cell and its sufficient operation arriving from the corresponding successful SPICE simulation results.]]></description><subject>Circuit design</subject><subject>Combinatorial analysis</subject><subject>Energy dissipation</subject><subject>Fabrication</subject><subject>Figure of merit</subject><subject>Gates (circuits)</subject><subject>Graphene</subject><subject>Logic circuits</subject><subject>Logic gates</subject><subject>nanoelectronic circuits</subject><subject>nanoribbon transistors</subject><subject>Nanoribbons</subject><subject>Photonic band gap</subject><subject>Switches</subject><subject>Switching</subject><subject>Topology</subject><subject>Two dimensional materials</subject><issn>1536-125X</issn><issn>1941-0085</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpNkLFOwzAQhi0EEqXwAoghEnOKfRfH8VgqKEhRK6EisVm2cymp2qTY7cDbN6UdmO6G__vv9DF2L_hICK6fFrPxbD4CDjhCBEStLthA6EyknBfyst8l5qkA-XXNbmJccS5ULosBk-Pkg7ahWwa72Vi3pmQa7PabWkpmtu1C41zXps82UpWU3bLxydTu6JZd1XYd6e48h-zz9WUxeUvL-fR9Mi5TD5napVqrvMDagdK5VtJX6DBzThUZgeZcSSBJ3ntwQJ4sVpWqKpd54VTtNBc4ZI-n3v7Dnz3FnVl1-9D2Jw0USmdcaIl9Ck4pH7oYA9VmG5qNDb9GcHPUY_70mKMec9bTQw8nqCGifwAo2SvDA1wWYD8</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>Rallis, Konstantinos</creator><creator>Fyrigos, Iosif-Angelos</creator><creator>Dimitrakis, Panagiotis</creator><creator>Dimitrakopoulos, Giorgos</creator><creator>Karafyllidis, Ioannis</creator><creator>Rubio, Antonio</creator><creator>Sirakoulis, Georgios Ch</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-0501-5554</orcidid><orcidid>https://orcid.org/0000-0003-1625-1472</orcidid><orcidid>https://orcid.org/0000-0003-2079-5480</orcidid><orcidid>https://orcid.org/0000-0002-4941-0487</orcidid><orcidid>https://orcid.org/0000-0001-8240-484X</orcidid><orcidid>https://orcid.org/0000-0001-8032-1725</orcidid><orcidid>https://orcid.org/0000-0003-3688-7865</orcidid></search><sort><creationdate>2023</creationdate><title>A Reprogrammable Graphene Nanoribbon-Based Logic Gate</title><author>Rallis, Konstantinos ; Fyrigos, Iosif-Angelos ; Dimitrakis, Panagiotis ; Dimitrakopoulos, Giorgos ; Karafyllidis, Ioannis ; Rubio, Antonio ; Sirakoulis, Georgios Ch</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c247t-997683fb2796975cd3b34bb784e2900752e5eccc2b2ecea3dd7ddb4c1b7fb9013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Circuit design</topic><topic>Combinatorial analysis</topic><topic>Energy dissipation</topic><topic>Fabrication</topic><topic>Figure of merit</topic><topic>Gates (circuits)</topic><topic>Graphene</topic><topic>Logic circuits</topic><topic>Logic gates</topic><topic>nanoelectronic circuits</topic><topic>nanoribbon transistors</topic><topic>Nanoribbons</topic><topic>Photonic band gap</topic><topic>Switches</topic><topic>Switching</topic><topic>Topology</topic><topic>Two dimensional materials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rallis, Konstantinos</creatorcontrib><creatorcontrib>Fyrigos, Iosif-Angelos</creatorcontrib><creatorcontrib>Dimitrakis, Panagiotis</creatorcontrib><creatorcontrib>Dimitrakopoulos, Giorgos</creatorcontrib><creatorcontrib>Karafyllidis, Ioannis</creatorcontrib><creatorcontrib>Rubio, Antonio</creatorcontrib><creatorcontrib>Sirakoulis, Georgios Ch</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) Online</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on nanotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rallis, Konstantinos</au><au>Fyrigos, Iosif-Angelos</au><au>Dimitrakis, Panagiotis</au><au>Dimitrakopoulos, Giorgos</au><au>Karafyllidis, Ioannis</au><au>Rubio, Antonio</au><au>Sirakoulis, Georgios Ch</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Reprogrammable Graphene Nanoribbon-Based Logic Gate</atitle><jtitle>IEEE transactions on nanotechnology</jtitle><stitle>TNANO</stitle><date>2023</date><risdate>2023</risdate><volume>22</volume><spage>684</spage><epage>695</epage><pages>684-695</pages><issn>1536-125X</issn><eissn>1941-0085</eissn><coden>ITNECU</coden><abstract><![CDATA[In this article, taking into consideration the exceptional technological properties of a unique 2-D material, namely Graphene, we are envisioning its usage as the structure material of a non-back-gated re-programmable switching device. The proposed topology is analyzed in depth, not only by verifying its operation and re-programmability as a 2-input XOR , 3-input XOR and 3-input Majority gate, but also by examining its computing performance in terms of area, delay and power dissipation. More specifically, we are utilizing L-shaped Graphene Nanoribbons (GNRs) to develop comb-shaped Graphene based switching devices. These devices are in position with effective programming through biasing to design any combinatorial circuit as resulting from the aforementioned universal set of Boolean gates. The resulting figures of merit regarding the area with a universal footprint of <inline-formula><tex-math notation="LaTeX">\text{2.53 nm}^{2}</tex-math></inline-formula> for every gate independently of the number of inputs, the propagation delay with <inline-formula><tex-math notation="LaTeX">2.05\times {10^{-2}}\;\text{ps}</tex-math></inline-formula> and, last but not least, the power dissipation with only <inline-formula><tex-math notation="LaTeX">\text{10.204 nW}</tex-math></inline-formula> for the gates with greater number of inputs, are quite encouraging and promising. Moreover, the ability of the proposed topology to pave the way towards the implementation of basic circuits has been further investigated, by demonstrating an example of a 1-bit full adder cell and its sufficient operation arriving from the corresponding successful SPICE simulation results.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TNANO.2023.3323397</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-0501-5554</orcidid><orcidid>https://orcid.org/0000-0003-1625-1472</orcidid><orcidid>https://orcid.org/0000-0003-2079-5480</orcidid><orcidid>https://orcid.org/0000-0002-4941-0487</orcidid><orcidid>https://orcid.org/0000-0001-8240-484X</orcidid><orcidid>https://orcid.org/0000-0001-8032-1725</orcidid><orcidid>https://orcid.org/0000-0003-3688-7865</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1536-125X |
ispartof | IEEE transactions on nanotechnology, 2023, Vol.22, p.684-695 |
issn | 1536-125X 1941-0085 |
language | eng |
recordid | cdi_proquest_journals_2879401953 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Circuit design Combinatorial analysis Energy dissipation Fabrication Figure of merit Gates (circuits) Graphene Logic circuits Logic gates nanoelectronic circuits nanoribbon transistors Nanoribbons Photonic band gap Switches Switching Topology Two dimensional materials |
title | A Reprogrammable Graphene Nanoribbon-Based Logic Gate |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T09%3A14%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Reprogrammable%20Graphene%20Nanoribbon-Based%20Logic%20Gate&rft.jtitle=IEEE%20transactions%20on%20nanotechnology&rft.au=Rallis,%20Konstantinos&rft.date=2023&rft.volume=22&rft.spage=684&rft.epage=695&rft.pages=684-695&rft.issn=1536-125X&rft.eissn=1941-0085&rft.coden=ITNECU&rft_id=info:doi/10.1109/TNANO.2023.3323397&rft_dat=%3Cproquest_cross%3E2879401953%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c247t-997683fb2796975cd3b34bb784e2900752e5eccc2b2ecea3dd7ddb4c1b7fb9013%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2879401953&rft_id=info:pmid/&rft_ieee_id=10275008&rfr_iscdi=true |