Loading…
Preference Optimization for Molecular Language Models
Molecular language modeling is an effective approach to generating novel chemical structures. However, these models do not \emph{a priori} encode certain preferences a chemist may desire. We investigate the use of fine-tuning using Direct Preference Optimization to better align generated molecules w...
Saved in:
Published in: | arXiv.org 2023-10 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Park, Ryan Theisen, Ryan Sahni, Navriti Patek, Marcel Cichońska, Anna Rahman, Rayees |
description | Molecular language modeling is an effective approach to generating novel chemical structures. However, these models do not \emph{a priori} encode certain preferences a chemist may desire. We investigate the use of fine-tuning using Direct Preference Optimization to better align generated molecules with chemist preferences. Our findings suggest that this approach is simple, efficient, and highly effective. |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2879448254</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2879448254</sourcerecordid><originalsourceid>FETCH-proquest_journals_28794482543</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mQwDShKTUstSs1LTlXwLyjJzM2sSizJzM9TSMsvUvDNz0lNLs1JLFLwScxLL01MTwUKpaTmFPMwsKYl5hSn8kJpbgZlN9cQZw_dgqL8wtLU4pL4rPzSojygVLyRhbmliYmFkamJMXGqAK-yNT0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2879448254</pqid></control><display><type>article</type><title>Preference Optimization for Molecular Language Models</title><source>Publicly Available Content Database</source><creator>Park, Ryan ; Theisen, Ryan ; Sahni, Navriti ; Patek, Marcel ; Cichońska, Anna ; Rahman, Rayees</creator><creatorcontrib>Park, Ryan ; Theisen, Ryan ; Sahni, Navriti ; Patek, Marcel ; Cichońska, Anna ; Rahman, Rayees</creatorcontrib><description>Molecular language modeling is an effective approach to generating novel chemical structures. However, these models do not \emph{a priori} encode certain preferences a chemist may desire. We investigate the use of fine-tuning using Direct Preference Optimization to better align generated molecules with chemist preferences. Our findings suggest that this approach is simple, efficient, and highly effective.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Chemists ; Optimization</subject><ispartof>arXiv.org, 2023-10</ispartof><rights>2023. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2879448254?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>777,781,25734,36993,44571</link.rule.ids></links><search><creatorcontrib>Park, Ryan</creatorcontrib><creatorcontrib>Theisen, Ryan</creatorcontrib><creatorcontrib>Sahni, Navriti</creatorcontrib><creatorcontrib>Patek, Marcel</creatorcontrib><creatorcontrib>Cichońska, Anna</creatorcontrib><creatorcontrib>Rahman, Rayees</creatorcontrib><title>Preference Optimization for Molecular Language Models</title><title>arXiv.org</title><description>Molecular language modeling is an effective approach to generating novel chemical structures. However, these models do not \emph{a priori} encode certain preferences a chemist may desire. We investigate the use of fine-tuning using Direct Preference Optimization to better align generated molecules with chemist preferences. Our findings suggest that this approach is simple, efficient, and highly effective.</description><subject>Chemists</subject><subject>Optimization</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mQwDShKTUstSs1LTlXwLyjJzM2sSizJzM9TSMsvUvDNz0lNLs1JLFLwScxLL01MTwUKpaTmFPMwsKYl5hSn8kJpbgZlN9cQZw_dgqL8wtLU4pL4rPzSojygVLyRhbmliYmFkamJMXGqAK-yNT0</recordid><startdate>20231018</startdate><enddate>20231018</enddate><creator>Park, Ryan</creator><creator>Theisen, Ryan</creator><creator>Sahni, Navriti</creator><creator>Patek, Marcel</creator><creator>Cichońska, Anna</creator><creator>Rahman, Rayees</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20231018</creationdate><title>Preference Optimization for Molecular Language Models</title><author>Park, Ryan ; Theisen, Ryan ; Sahni, Navriti ; Patek, Marcel ; Cichońska, Anna ; Rahman, Rayees</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_28794482543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Chemists</topic><topic>Optimization</topic><toplevel>online_resources</toplevel><creatorcontrib>Park, Ryan</creatorcontrib><creatorcontrib>Theisen, Ryan</creatorcontrib><creatorcontrib>Sahni, Navriti</creatorcontrib><creatorcontrib>Patek, Marcel</creatorcontrib><creatorcontrib>Cichońska, Anna</creatorcontrib><creatorcontrib>Rahman, Rayees</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Databases</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Park, Ryan</au><au>Theisen, Ryan</au><au>Sahni, Navriti</au><au>Patek, Marcel</au><au>Cichońska, Anna</au><au>Rahman, Rayees</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Preference Optimization for Molecular Language Models</atitle><jtitle>arXiv.org</jtitle><date>2023-10-18</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>Molecular language modeling is an effective approach to generating novel chemical structures. However, these models do not \emph{a priori} encode certain preferences a chemist may desire. We investigate the use of fine-tuning using Direct Preference Optimization to better align generated molecules with chemist preferences. Our findings suggest that this approach is simple, efficient, and highly effective.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2023-10 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2879448254 |
source | Publicly Available Content Database |
subjects | Chemists Optimization |
title | Preference Optimization for Molecular Language Models |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T20%3A38%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Preference%20Optimization%20for%20Molecular%20Language%20Models&rft.jtitle=arXiv.org&rft.au=Park,%20Ryan&rft.date=2023-10-18&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2879448254%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_28794482543%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2879448254&rft_id=info:pmid/&rfr_iscdi=true |