Loading…

Regularity theory for non-autonomous problems with a priori assumptions

We study weak solutions and minimizers u of the non-autonomous problems div A ( x , D u ) = 0 and min v ∫ Ω F ( x , D v ) d x with quasi-isotropic ( p ,  q )-growth. We consider the case that u is bounded, Hölder continuous or lies in a Lebesgue space and establish a sharp connection between assumpt...

Full description

Saved in:
Bibliographic Details
Published in:Calculus of variations and partial differential equations 2023-12, Vol.62 (9), Article 251
Main Authors: Hästö, Peter, Ok, Jihoon
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c363t-eade43d81826c76e2bd87576f5976755aef7665bf7c3dff55e3d44283f5c3abb3
cites cdi_FETCH-LOGICAL-c363t-eade43d81826c76e2bd87576f5976755aef7665bf7c3dff55e3d44283f5c3abb3
container_end_page
container_issue 9
container_start_page
container_title Calculus of variations and partial differential equations
container_volume 62
creator Hästö, Peter
Ok, Jihoon
description We study weak solutions and minimizers u of the non-autonomous problems div A ( x , D u ) = 0 and min v ∫ Ω F ( x , D v ) d x with quasi-isotropic ( p ,  q )-growth. We consider the case that u is bounded, Hölder continuous or lies in a Lebesgue space and establish a sharp connection between assumptions on A or F and the corresponding norm of u . We prove a Sobolev–Poincaré inequality, higher integrability and the Hölder continuity of u and Du . Our proofs are optimized and streamlined versions of earlier research that can more readily be further extended to other settings. Connections between assumptions on A or F and assumptions on u are known for the double phase energy F ( x , ξ ) = | ξ | p + a ( x ) | ξ | q . We obtain slightly better results even in this special case. Furthermore, we also cover perturbed variable exponent, Orlicz variable exponent, degenerate double phase, Orlicz double phase, triple phase, double variable exponent as well as variable exponent double phase energies and the results are new in most of these special cases.
doi_str_mv 10.1007/s00526-023-02587-3
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2879767116</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2879767116</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-eade43d81826c76e2bd87576f5976755aef7665bf7c3dff55e3d44283f5c3abb3</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxYMoWKtfwFPAczTJbP70KEWrUBBEzyG7m7RbupuaZJF-e6MrePMwDAPvvXn8ELpm9JZRqu4SpYJLQjmUEVoROEEzVgEnVIM4RTO6qCrCpVyco4uUdpQyoXk1Q6tXtxn3Nnb5iPPWhXjEPkQ8hIHYMYch9GFM-BBDvXd9wp9d3mJb7i7EDtuUxv6QuzCkS3Tm7T65q989R--PD2_LJ7J-WT0v79ekAQmZONu6ClrNNJeNko7XrVZCSS8WSiohrPNKSlF71UDrvRAO2qriGrxowNY1zNHNlFsqfYwuZbMLYxzKS8O1-g5hTBYVn1RNDClF501p3Nt4NIyab2BmAmYKMPMDzEAxwWRKRTxsXPyL_sf1BeSpby8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2879767116</pqid></control><display><type>article</type><title>Regularity theory for non-autonomous problems with a priori assumptions</title><source>Springer Nature</source><creator>Hästö, Peter ; Ok, Jihoon</creator><creatorcontrib>Hästö, Peter ; Ok, Jihoon</creatorcontrib><description>We study weak solutions and minimizers u of the non-autonomous problems div A ( x , D u ) = 0 and min v ∫ Ω F ( x , D v ) d x with quasi-isotropic ( p ,  q )-growth. We consider the case that u is bounded, Hölder continuous or lies in a Lebesgue space and establish a sharp connection between assumptions on A or F and the corresponding norm of u . We prove a Sobolev–Poincaré inequality, higher integrability and the Hölder continuity of u and Du . Our proofs are optimized and streamlined versions of earlier research that can more readily be further extended to other settings. Connections between assumptions on A or F and assumptions on u are known for the double phase energy F ( x , ξ ) = | ξ | p + a ( x ) | ξ | q . We obtain slightly better results even in this special case. Furthermore, we also cover perturbed variable exponent, Orlicz variable exponent, degenerate double phase, Orlicz double phase, triple phase, double variable exponent as well as variable exponent double phase energies and the results are new in most of these special cases.</description><identifier>ISSN: 0944-2669</identifier><identifier>EISSN: 1432-0835</identifier><identifier>DOI: 10.1007/s00526-023-02587-3</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Analysis ; Calculus of Variations and Optimal Control; Optimization ; Continuity (mathematics) ; Control ; Integral calculus ; Mathematical and Computational Physics ; Mathematics ; Mathematics and Statistics ; Systems Theory ; Theoretical</subject><ispartof>Calculus of variations and partial differential equations, 2023-12, Vol.62 (9), Article 251</ispartof><rights>The Author(s) 2023</rights><rights>The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-eade43d81826c76e2bd87576f5976755aef7665bf7c3dff55e3d44283f5c3abb3</citedby><cites>FETCH-LOGICAL-c363t-eade43d81826c76e2bd87576f5976755aef7665bf7c3dff55e3d44283f5c3abb3</cites><orcidid>0000-0002-3507-3424</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Hästö, Peter</creatorcontrib><creatorcontrib>Ok, Jihoon</creatorcontrib><title>Regularity theory for non-autonomous problems with a priori assumptions</title><title>Calculus of variations and partial differential equations</title><addtitle>Calc. Var</addtitle><description>We study weak solutions and minimizers u of the non-autonomous problems div A ( x , D u ) = 0 and min v ∫ Ω F ( x , D v ) d x with quasi-isotropic ( p ,  q )-growth. We consider the case that u is bounded, Hölder continuous or lies in a Lebesgue space and establish a sharp connection between assumptions on A or F and the corresponding norm of u . We prove a Sobolev–Poincaré inequality, higher integrability and the Hölder continuity of u and Du . Our proofs are optimized and streamlined versions of earlier research that can more readily be further extended to other settings. Connections between assumptions on A or F and assumptions on u are known for the double phase energy F ( x , ξ ) = | ξ | p + a ( x ) | ξ | q . We obtain slightly better results even in this special case. Furthermore, we also cover perturbed variable exponent, Orlicz variable exponent, degenerate double phase, Orlicz double phase, triple phase, double variable exponent as well as variable exponent double phase energies and the results are new in most of these special cases.</description><subject>Analysis</subject><subject>Calculus of Variations and Optimal Control; Optimization</subject><subject>Continuity (mathematics)</subject><subject>Control</subject><subject>Integral calculus</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Systems Theory</subject><subject>Theoretical</subject><issn>0944-2669</issn><issn>1432-0835</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LAzEQxYMoWKtfwFPAczTJbP70KEWrUBBEzyG7m7RbupuaZJF-e6MrePMwDAPvvXn8ELpm9JZRqu4SpYJLQjmUEVoROEEzVgEnVIM4RTO6qCrCpVyco4uUdpQyoXk1Q6tXtxn3Nnb5iPPWhXjEPkQ8hIHYMYch9GFM-BBDvXd9wp9d3mJb7i7EDtuUxv6QuzCkS3Tm7T65q989R--PD2_LJ7J-WT0v79ekAQmZONu6ClrNNJeNko7XrVZCSS8WSiohrPNKSlF71UDrvRAO2qriGrxowNY1zNHNlFsqfYwuZbMLYxzKS8O1-g5hTBYVn1RNDClF501p3Nt4NIyab2BmAmYKMPMDzEAxwWRKRTxsXPyL_sf1BeSpby8</recordid><startdate>20231201</startdate><enddate>20231201</enddate><creator>Hästö, Peter</creator><creator>Ok, Jihoon</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><orcidid>https://orcid.org/0000-0002-3507-3424</orcidid></search><sort><creationdate>20231201</creationdate><title>Regularity theory for non-autonomous problems with a priori assumptions</title><author>Hästö, Peter ; Ok, Jihoon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-eade43d81826c76e2bd87576f5976755aef7665bf7c3dff55e3d44283f5c3abb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Analysis</topic><topic>Calculus of Variations and Optimal Control; Optimization</topic><topic>Continuity (mathematics)</topic><topic>Control</topic><topic>Integral calculus</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Systems Theory</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hästö, Peter</creatorcontrib><creatorcontrib>Ok, Jihoon</creatorcontrib><collection>SpringerOpen</collection><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Calculus of variations and partial differential equations</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hästö, Peter</au><au>Ok, Jihoon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Regularity theory for non-autonomous problems with a priori assumptions</atitle><jtitle>Calculus of variations and partial differential equations</jtitle><stitle>Calc. Var</stitle><date>2023-12-01</date><risdate>2023</risdate><volume>62</volume><issue>9</issue><artnum>251</artnum><issn>0944-2669</issn><eissn>1432-0835</eissn><abstract>We study weak solutions and minimizers u of the non-autonomous problems div A ( x , D u ) = 0 and min v ∫ Ω F ( x , D v ) d x with quasi-isotropic ( p ,  q )-growth. We consider the case that u is bounded, Hölder continuous or lies in a Lebesgue space and establish a sharp connection between assumptions on A or F and the corresponding norm of u . We prove a Sobolev–Poincaré inequality, higher integrability and the Hölder continuity of u and Du . Our proofs are optimized and streamlined versions of earlier research that can more readily be further extended to other settings. Connections between assumptions on A or F and assumptions on u are known for the double phase energy F ( x , ξ ) = | ξ | p + a ( x ) | ξ | q . We obtain slightly better results even in this special case. Furthermore, we also cover perturbed variable exponent, Orlicz variable exponent, degenerate double phase, Orlicz double phase, triple phase, double variable exponent as well as variable exponent double phase energies and the results are new in most of these special cases.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00526-023-02587-3</doi><orcidid>https://orcid.org/0000-0002-3507-3424</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0944-2669
ispartof Calculus of variations and partial differential equations, 2023-12, Vol.62 (9), Article 251
issn 0944-2669
1432-0835
language eng
recordid cdi_proquest_journals_2879767116
source Springer Nature
subjects Analysis
Calculus of Variations and Optimal Control
Optimization
Continuity (mathematics)
Control
Integral calculus
Mathematical and Computational Physics
Mathematics
Mathematics and Statistics
Systems Theory
Theoretical
title Regularity theory for non-autonomous problems with a priori assumptions
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-31T23%3A43%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Regularity%20theory%20for%20non-autonomous%20problems%20with%20a%20priori%20assumptions&rft.jtitle=Calculus%20of%20variations%20and%20partial%20differential%20equations&rft.au=H%C3%A4st%C3%B6,%20Peter&rft.date=2023-12-01&rft.volume=62&rft.issue=9&rft.artnum=251&rft.issn=0944-2669&rft.eissn=1432-0835&rft_id=info:doi/10.1007/s00526-023-02587-3&rft_dat=%3Cproquest_cross%3E2879767116%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c363t-eade43d81826c76e2bd87576f5976755aef7665bf7c3dff55e3d44283f5c3abb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2879767116&rft_id=info:pmid/&rfr_iscdi=true