Loading…
Artificial Intelligence Application in Bioethanol Production
Energy consumption from biofuels against fossil fuels over the past few years has increased. This is due to the availability of these resources for production of different forms of energy, and the environmental benefit in the utilization of these resources. Ethanol fuel production from biomass is a...
Saved in:
Published in: | International journal of energy research 2023-10, Vol.2023, p.1-8 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c337t-eff93b45177714a4b1d2bb8c4cf6c9aa20d04eb44221a833c605fb58e3599b0c3 |
---|---|
cites | cdi_FETCH-LOGICAL-c337t-eff93b45177714a4b1d2bb8c4cf6c9aa20d04eb44221a833c605fb58e3599b0c3 |
container_end_page | 8 |
container_issue | |
container_start_page | 1 |
container_title | International journal of energy research |
container_volume | 2023 |
creator | Owusu, Winnie A. Marfo, Solomon A. |
description | Energy consumption from biofuels against fossil fuels over the past few years has increased. This is due to the availability of these resources for production of different forms of energy, and the environmental benefit in the utilization of these resources. Ethanol fuel production from biomass is a complex process of known challenges in the area of handling, optimizing, and future forecasting. The existence of modelling techniques like artificial intelligence (AI) is, therefore, necessary in the design, handling, and optimization of bioethanol production. The flexibility and high accuracy of artificial neural network (ANN), a machine learning technique, to solve intricate processes is beneficial in modelling pretreatment, fermentation, and conversion stages of a bioethanol production system. This paper reviews various AI techniques in bioethanol production giving emphasis on published articles in the past decade. |
doi_str_mv | 10.1155/2023/7844835 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2879847098</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2879847098</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-eff93b45177714a4b1d2bb8c4cf6c9aa20d04eb44221a833c605fb58e3599b0c3</originalsourceid><addsrcrecordid>eNp9kMtKAzEARYMoWKs7P2DApY7Nc5KAm1p8FAq6UOguJJnEpozJmJlS_HtnaNeu7uIe7oUDwDWC9wgxNsMQkxkXlArCTsAEQSlLhOj6FEwgqUgpIV-fg4uu20I4dIhPwMM898EHG3RTLGPvmiZ8uWhdMW_bJljdhxSLEIvHkFy_0TE1xXtO9c6OxSU487rp3NUxp-Dz-elj8Vqu3l6Wi_mqtITwvnTeS2IoQ5xzRDU1qMbGCEutr6zUGsMaUmcoxRhpQYitIPOGCUeYlAZaMgU3h902p5-d63q1Tbsch0uFBZeCcijFQN0dKJtT12XnVZvDt86_CkE1-lGjH3X0M-C3B3wTYq334X_6D-mNZGw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2879847098</pqid></control><display><type>article</type><title>Artificial Intelligence Application in Bioethanol Production</title><source>Publicly Available Content Database</source><source>Wiley Open Access</source><creator>Owusu, Winnie A. ; Marfo, Solomon A.</creator><contributor>Andiappan, Viknesh ; Viknesh Andiappan</contributor><creatorcontrib>Owusu, Winnie A. ; Marfo, Solomon A. ; Andiappan, Viknesh ; Viknesh Andiappan</creatorcontrib><description>Energy consumption from biofuels against fossil fuels over the past few years has increased. This is due to the availability of these resources for production of different forms of energy, and the environmental benefit in the utilization of these resources. Ethanol fuel production from biomass is a complex process of known challenges in the area of handling, optimizing, and future forecasting. The existence of modelling techniques like artificial intelligence (AI) is, therefore, necessary in the design, handling, and optimization of bioethanol production. The flexibility and high accuracy of artificial neural network (ANN), a machine learning technique, to solve intricate processes is beneficial in modelling pretreatment, fermentation, and conversion stages of a bioethanol production system. This paper reviews various AI techniques in bioethanol production giving emphasis on published articles in the past decade.</description><identifier>ISSN: 0363-907X</identifier><identifier>EISSN: 1099-114X</identifier><identifier>DOI: 10.1155/2023/7844835</identifier><language>eng</language><publisher>Bognor Regis: Hindawi</publisher><subject>Agricultural production ; Algorithms ; Alternative energy sources ; Artificial intelligence ; Artificial neural networks ; Bacteria ; Biodiesel fuels ; Bioethanol ; Biofuels ; Biomass ; Classification ; Datasets ; Design optimization ; Efficiency ; Energy consumption ; Enzymes ; Ethanol ; Fermentation ; Fossil fuels ; Fuel production ; Gasoline ; Handling ; Machine learning ; Microorganisms ; Modelling ; Neural networks ; Raw materials ; Renewable resources ; Statistical analysis ; Sugarcane ; Sustainability</subject><ispartof>International journal of energy research, 2023-10, Vol.2023, p.1-8</ispartof><rights>Copyright © 2023 Winnie A. Owusu and Solomon A. Marfo.</rights><rights>Copyright © 2023 Winnie A. Owusu and Solomon A. Marfo. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-eff93b45177714a4b1d2bb8c4cf6c9aa20d04eb44221a833c605fb58e3599b0c3</citedby><cites>FETCH-LOGICAL-c337t-eff93b45177714a4b1d2bb8c4cf6c9aa20d04eb44221a833c605fb58e3599b0c3</cites><orcidid>0000-0002-3107-6089 ; 0000-0002-6361-7812</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2879847098/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2879847098?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25752,27923,27924,37011,44589,74997</link.rule.ids></links><search><contributor>Andiappan, Viknesh</contributor><contributor>Viknesh Andiappan</contributor><creatorcontrib>Owusu, Winnie A.</creatorcontrib><creatorcontrib>Marfo, Solomon A.</creatorcontrib><title>Artificial Intelligence Application in Bioethanol Production</title><title>International journal of energy research</title><description>Energy consumption from biofuels against fossil fuels over the past few years has increased. This is due to the availability of these resources for production of different forms of energy, and the environmental benefit in the utilization of these resources. Ethanol fuel production from biomass is a complex process of known challenges in the area of handling, optimizing, and future forecasting. The existence of modelling techniques like artificial intelligence (AI) is, therefore, necessary in the design, handling, and optimization of bioethanol production. The flexibility and high accuracy of artificial neural network (ANN), a machine learning technique, to solve intricate processes is beneficial in modelling pretreatment, fermentation, and conversion stages of a bioethanol production system. This paper reviews various AI techniques in bioethanol production giving emphasis on published articles in the past decade.</description><subject>Agricultural production</subject><subject>Algorithms</subject><subject>Alternative energy sources</subject><subject>Artificial intelligence</subject><subject>Artificial neural networks</subject><subject>Bacteria</subject><subject>Biodiesel fuels</subject><subject>Bioethanol</subject><subject>Biofuels</subject><subject>Biomass</subject><subject>Classification</subject><subject>Datasets</subject><subject>Design optimization</subject><subject>Efficiency</subject><subject>Energy consumption</subject><subject>Enzymes</subject><subject>Ethanol</subject><subject>Fermentation</subject><subject>Fossil fuels</subject><subject>Fuel production</subject><subject>Gasoline</subject><subject>Handling</subject><subject>Machine learning</subject><subject>Microorganisms</subject><subject>Modelling</subject><subject>Neural networks</subject><subject>Raw materials</subject><subject>Renewable resources</subject><subject>Statistical analysis</subject><subject>Sugarcane</subject><subject>Sustainability</subject><issn>0363-907X</issn><issn>1099-114X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNp9kMtKAzEARYMoWKs7P2DApY7Nc5KAm1p8FAq6UOguJJnEpozJmJlS_HtnaNeu7uIe7oUDwDWC9wgxNsMQkxkXlArCTsAEQSlLhOj6FEwgqUgpIV-fg4uu20I4dIhPwMM898EHG3RTLGPvmiZ8uWhdMW_bJljdhxSLEIvHkFy_0TE1xXtO9c6OxSU487rp3NUxp-Dz-elj8Vqu3l6Wi_mqtITwvnTeS2IoQ5xzRDU1qMbGCEutr6zUGsMaUmcoxRhpQYitIPOGCUeYlAZaMgU3h902p5-d63q1Tbsch0uFBZeCcijFQN0dKJtT12XnVZvDt86_CkE1-lGjH3X0M-C3B3wTYq334X_6D-mNZGw</recordid><startdate>20231010</startdate><enddate>20231010</enddate><creator>Owusu, Winnie A.</creator><creator>Marfo, Solomon A.</creator><general>Hindawi</general><general>Hindawi Limited</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7ST</scope><scope>7TB</scope><scope>7TN</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>F28</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-3107-6089</orcidid><orcidid>https://orcid.org/0000-0002-6361-7812</orcidid></search><sort><creationdate>20231010</creationdate><title>Artificial Intelligence Application in Bioethanol Production</title><author>Owusu, Winnie A. ; Marfo, Solomon A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-eff93b45177714a4b1d2bb8c4cf6c9aa20d04eb44221a833c605fb58e3599b0c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Agricultural production</topic><topic>Algorithms</topic><topic>Alternative energy sources</topic><topic>Artificial intelligence</topic><topic>Artificial neural networks</topic><topic>Bacteria</topic><topic>Biodiesel fuels</topic><topic>Bioethanol</topic><topic>Biofuels</topic><topic>Biomass</topic><topic>Classification</topic><topic>Datasets</topic><topic>Design optimization</topic><topic>Efficiency</topic><topic>Energy consumption</topic><topic>Enzymes</topic><topic>Ethanol</topic><topic>Fermentation</topic><topic>Fossil fuels</topic><topic>Fuel production</topic><topic>Gasoline</topic><topic>Handling</topic><topic>Machine learning</topic><topic>Microorganisms</topic><topic>Modelling</topic><topic>Neural networks</topic><topic>Raw materials</topic><topic>Renewable resources</topic><topic>Statistical analysis</topic><topic>Sugarcane</topic><topic>Sustainability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Owusu, Winnie A.</creatorcontrib><creatorcontrib>Marfo, Solomon A.</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Environment Abstracts</collection><jtitle>International journal of energy research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Owusu, Winnie A.</au><au>Marfo, Solomon A.</au><au>Andiappan, Viknesh</au><au>Viknesh Andiappan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Artificial Intelligence Application in Bioethanol Production</atitle><jtitle>International journal of energy research</jtitle><date>2023-10-10</date><risdate>2023</risdate><volume>2023</volume><spage>1</spage><epage>8</epage><pages>1-8</pages><issn>0363-907X</issn><eissn>1099-114X</eissn><abstract>Energy consumption from biofuels against fossil fuels over the past few years has increased. This is due to the availability of these resources for production of different forms of energy, and the environmental benefit in the utilization of these resources. Ethanol fuel production from biomass is a complex process of known challenges in the area of handling, optimizing, and future forecasting. The existence of modelling techniques like artificial intelligence (AI) is, therefore, necessary in the design, handling, and optimization of bioethanol production. The flexibility and high accuracy of artificial neural network (ANN), a machine learning technique, to solve intricate processes is beneficial in modelling pretreatment, fermentation, and conversion stages of a bioethanol production system. This paper reviews various AI techniques in bioethanol production giving emphasis on published articles in the past decade.</abstract><cop>Bognor Regis</cop><pub>Hindawi</pub><doi>10.1155/2023/7844835</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-3107-6089</orcidid><orcidid>https://orcid.org/0000-0002-6361-7812</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0363-907X |
ispartof | International journal of energy research, 2023-10, Vol.2023, p.1-8 |
issn | 0363-907X 1099-114X |
language | eng |
recordid | cdi_proquest_journals_2879847098 |
source | Publicly Available Content Database; Wiley Open Access |
subjects | Agricultural production Algorithms Alternative energy sources Artificial intelligence Artificial neural networks Bacteria Biodiesel fuels Bioethanol Biofuels Biomass Classification Datasets Design optimization Efficiency Energy consumption Enzymes Ethanol Fermentation Fossil fuels Fuel production Gasoline Handling Machine learning Microorganisms Modelling Neural networks Raw materials Renewable resources Statistical analysis Sugarcane Sustainability |
title | Artificial Intelligence Application in Bioethanol Production |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T15%3A27%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Artificial%20Intelligence%20Application%20in%20Bioethanol%20Production&rft.jtitle=International%20journal%20of%20energy%20research&rft.au=Owusu,%20Winnie%20A.&rft.date=2023-10-10&rft.volume=2023&rft.spage=1&rft.epage=8&rft.pages=1-8&rft.issn=0363-907X&rft.eissn=1099-114X&rft_id=info:doi/10.1155/2023/7844835&rft_dat=%3Cproquest_cross%3E2879847098%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c337t-eff93b45177714a4b1d2bb8c4cf6c9aa20d04eb44221a833c605fb58e3599b0c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2879847098&rft_id=info:pmid/&rfr_iscdi=true |