Loading…

Artificial Intelligence Application in Bioethanol Production

Energy consumption from biofuels against fossil fuels over the past few years has increased. This is due to the availability of these resources for production of different forms of energy, and the environmental benefit in the utilization of these resources. Ethanol fuel production from biomass is a...

Full description

Saved in:
Bibliographic Details
Published in:International journal of energy research 2023-10, Vol.2023, p.1-8
Main Authors: Owusu, Winnie A., Marfo, Solomon A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c337t-eff93b45177714a4b1d2bb8c4cf6c9aa20d04eb44221a833c605fb58e3599b0c3
cites cdi_FETCH-LOGICAL-c337t-eff93b45177714a4b1d2bb8c4cf6c9aa20d04eb44221a833c605fb58e3599b0c3
container_end_page 8
container_issue
container_start_page 1
container_title International journal of energy research
container_volume 2023
creator Owusu, Winnie A.
Marfo, Solomon A.
description Energy consumption from biofuels against fossil fuels over the past few years has increased. This is due to the availability of these resources for production of different forms of energy, and the environmental benefit in the utilization of these resources. Ethanol fuel production from biomass is a complex process of known challenges in the area of handling, optimizing, and future forecasting. The existence of modelling techniques like artificial intelligence (AI) is, therefore, necessary in the design, handling, and optimization of bioethanol production. The flexibility and high accuracy of artificial neural network (ANN), a machine learning technique, to solve intricate processes is beneficial in modelling pretreatment, fermentation, and conversion stages of a bioethanol production system. This paper reviews various AI techniques in bioethanol production giving emphasis on published articles in the past decade.
doi_str_mv 10.1155/2023/7844835
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2879847098</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2879847098</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-eff93b45177714a4b1d2bb8c4cf6c9aa20d04eb44221a833c605fb58e3599b0c3</originalsourceid><addsrcrecordid>eNp9kMtKAzEARYMoWKs7P2DApY7Nc5KAm1p8FAq6UOguJJnEpozJmJlS_HtnaNeu7uIe7oUDwDWC9wgxNsMQkxkXlArCTsAEQSlLhOj6FEwgqUgpIV-fg4uu20I4dIhPwMM898EHG3RTLGPvmiZ8uWhdMW_bJljdhxSLEIvHkFy_0TE1xXtO9c6OxSU487rp3NUxp-Dz-elj8Vqu3l6Wi_mqtITwvnTeS2IoQ5xzRDU1qMbGCEutr6zUGsMaUmcoxRhpQYitIPOGCUeYlAZaMgU3h902p5-d63q1Tbsch0uFBZeCcijFQN0dKJtT12XnVZvDt86_CkE1-lGjH3X0M-C3B3wTYq334X_6D-mNZGw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2879847098</pqid></control><display><type>article</type><title>Artificial Intelligence Application in Bioethanol Production</title><source>Publicly Available Content Database</source><source>Wiley Open Access</source><creator>Owusu, Winnie A. ; Marfo, Solomon A.</creator><contributor>Andiappan, Viknesh ; Viknesh Andiappan</contributor><creatorcontrib>Owusu, Winnie A. ; Marfo, Solomon A. ; Andiappan, Viknesh ; Viknesh Andiappan</creatorcontrib><description>Energy consumption from biofuels against fossil fuels over the past few years has increased. This is due to the availability of these resources for production of different forms of energy, and the environmental benefit in the utilization of these resources. Ethanol fuel production from biomass is a complex process of known challenges in the area of handling, optimizing, and future forecasting. The existence of modelling techniques like artificial intelligence (AI) is, therefore, necessary in the design, handling, and optimization of bioethanol production. The flexibility and high accuracy of artificial neural network (ANN), a machine learning technique, to solve intricate processes is beneficial in modelling pretreatment, fermentation, and conversion stages of a bioethanol production system. This paper reviews various AI techniques in bioethanol production giving emphasis on published articles in the past decade.</description><identifier>ISSN: 0363-907X</identifier><identifier>EISSN: 1099-114X</identifier><identifier>DOI: 10.1155/2023/7844835</identifier><language>eng</language><publisher>Bognor Regis: Hindawi</publisher><subject>Agricultural production ; Algorithms ; Alternative energy sources ; Artificial intelligence ; Artificial neural networks ; Bacteria ; Biodiesel fuels ; Bioethanol ; Biofuels ; Biomass ; Classification ; Datasets ; Design optimization ; Efficiency ; Energy consumption ; Enzymes ; Ethanol ; Fermentation ; Fossil fuels ; Fuel production ; Gasoline ; Handling ; Machine learning ; Microorganisms ; Modelling ; Neural networks ; Raw materials ; Renewable resources ; Statistical analysis ; Sugarcane ; Sustainability</subject><ispartof>International journal of energy research, 2023-10, Vol.2023, p.1-8</ispartof><rights>Copyright © 2023 Winnie A. Owusu and Solomon A. Marfo.</rights><rights>Copyright © 2023 Winnie A. Owusu and Solomon A. Marfo. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-eff93b45177714a4b1d2bb8c4cf6c9aa20d04eb44221a833c605fb58e3599b0c3</citedby><cites>FETCH-LOGICAL-c337t-eff93b45177714a4b1d2bb8c4cf6c9aa20d04eb44221a833c605fb58e3599b0c3</cites><orcidid>0000-0002-3107-6089 ; 0000-0002-6361-7812</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2879847098/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2879847098?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25752,27923,27924,37011,44589,74997</link.rule.ids></links><search><contributor>Andiappan, Viknesh</contributor><contributor>Viknesh Andiappan</contributor><creatorcontrib>Owusu, Winnie A.</creatorcontrib><creatorcontrib>Marfo, Solomon A.</creatorcontrib><title>Artificial Intelligence Application in Bioethanol Production</title><title>International journal of energy research</title><description>Energy consumption from biofuels against fossil fuels over the past few years has increased. This is due to the availability of these resources for production of different forms of energy, and the environmental benefit in the utilization of these resources. Ethanol fuel production from biomass is a complex process of known challenges in the area of handling, optimizing, and future forecasting. The existence of modelling techniques like artificial intelligence (AI) is, therefore, necessary in the design, handling, and optimization of bioethanol production. The flexibility and high accuracy of artificial neural network (ANN), a machine learning technique, to solve intricate processes is beneficial in modelling pretreatment, fermentation, and conversion stages of a bioethanol production system. This paper reviews various AI techniques in bioethanol production giving emphasis on published articles in the past decade.</description><subject>Agricultural production</subject><subject>Algorithms</subject><subject>Alternative energy sources</subject><subject>Artificial intelligence</subject><subject>Artificial neural networks</subject><subject>Bacteria</subject><subject>Biodiesel fuels</subject><subject>Bioethanol</subject><subject>Biofuels</subject><subject>Biomass</subject><subject>Classification</subject><subject>Datasets</subject><subject>Design optimization</subject><subject>Efficiency</subject><subject>Energy consumption</subject><subject>Enzymes</subject><subject>Ethanol</subject><subject>Fermentation</subject><subject>Fossil fuels</subject><subject>Fuel production</subject><subject>Gasoline</subject><subject>Handling</subject><subject>Machine learning</subject><subject>Microorganisms</subject><subject>Modelling</subject><subject>Neural networks</subject><subject>Raw materials</subject><subject>Renewable resources</subject><subject>Statistical analysis</subject><subject>Sugarcane</subject><subject>Sustainability</subject><issn>0363-907X</issn><issn>1099-114X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNp9kMtKAzEARYMoWKs7P2DApY7Nc5KAm1p8FAq6UOguJJnEpozJmJlS_HtnaNeu7uIe7oUDwDWC9wgxNsMQkxkXlArCTsAEQSlLhOj6FEwgqUgpIV-fg4uu20I4dIhPwMM898EHG3RTLGPvmiZ8uWhdMW_bJljdhxSLEIvHkFy_0TE1xXtO9c6OxSU487rp3NUxp-Dz-elj8Vqu3l6Wi_mqtITwvnTeS2IoQ5xzRDU1qMbGCEutr6zUGsMaUmcoxRhpQYitIPOGCUeYlAZaMgU3h902p5-d63q1Tbsch0uFBZeCcijFQN0dKJtT12XnVZvDt86_CkE1-lGjH3X0M-C3B3wTYq334X_6D-mNZGw</recordid><startdate>20231010</startdate><enddate>20231010</enddate><creator>Owusu, Winnie A.</creator><creator>Marfo, Solomon A.</creator><general>Hindawi</general><general>Hindawi Limited</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7ST</scope><scope>7TB</scope><scope>7TN</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>F28</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-3107-6089</orcidid><orcidid>https://orcid.org/0000-0002-6361-7812</orcidid></search><sort><creationdate>20231010</creationdate><title>Artificial Intelligence Application in Bioethanol Production</title><author>Owusu, Winnie A. ; Marfo, Solomon A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-eff93b45177714a4b1d2bb8c4cf6c9aa20d04eb44221a833c605fb58e3599b0c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Agricultural production</topic><topic>Algorithms</topic><topic>Alternative energy sources</topic><topic>Artificial intelligence</topic><topic>Artificial neural networks</topic><topic>Bacteria</topic><topic>Biodiesel fuels</topic><topic>Bioethanol</topic><topic>Biofuels</topic><topic>Biomass</topic><topic>Classification</topic><topic>Datasets</topic><topic>Design optimization</topic><topic>Efficiency</topic><topic>Energy consumption</topic><topic>Enzymes</topic><topic>Ethanol</topic><topic>Fermentation</topic><topic>Fossil fuels</topic><topic>Fuel production</topic><topic>Gasoline</topic><topic>Handling</topic><topic>Machine learning</topic><topic>Microorganisms</topic><topic>Modelling</topic><topic>Neural networks</topic><topic>Raw materials</topic><topic>Renewable resources</topic><topic>Statistical analysis</topic><topic>Sugarcane</topic><topic>Sustainability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Owusu, Winnie A.</creatorcontrib><creatorcontrib>Marfo, Solomon A.</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Environment Abstracts</collection><jtitle>International journal of energy research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Owusu, Winnie A.</au><au>Marfo, Solomon A.</au><au>Andiappan, Viknesh</au><au>Viknesh Andiappan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Artificial Intelligence Application in Bioethanol Production</atitle><jtitle>International journal of energy research</jtitle><date>2023-10-10</date><risdate>2023</risdate><volume>2023</volume><spage>1</spage><epage>8</epage><pages>1-8</pages><issn>0363-907X</issn><eissn>1099-114X</eissn><abstract>Energy consumption from biofuels against fossil fuels over the past few years has increased. This is due to the availability of these resources for production of different forms of energy, and the environmental benefit in the utilization of these resources. Ethanol fuel production from biomass is a complex process of known challenges in the area of handling, optimizing, and future forecasting. The existence of modelling techniques like artificial intelligence (AI) is, therefore, necessary in the design, handling, and optimization of bioethanol production. The flexibility and high accuracy of artificial neural network (ANN), a machine learning technique, to solve intricate processes is beneficial in modelling pretreatment, fermentation, and conversion stages of a bioethanol production system. This paper reviews various AI techniques in bioethanol production giving emphasis on published articles in the past decade.</abstract><cop>Bognor Regis</cop><pub>Hindawi</pub><doi>10.1155/2023/7844835</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-3107-6089</orcidid><orcidid>https://orcid.org/0000-0002-6361-7812</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0363-907X
ispartof International journal of energy research, 2023-10, Vol.2023, p.1-8
issn 0363-907X
1099-114X
language eng
recordid cdi_proquest_journals_2879847098
source Publicly Available Content Database; Wiley Open Access
subjects Agricultural production
Algorithms
Alternative energy sources
Artificial intelligence
Artificial neural networks
Bacteria
Biodiesel fuels
Bioethanol
Biofuels
Biomass
Classification
Datasets
Design optimization
Efficiency
Energy consumption
Enzymes
Ethanol
Fermentation
Fossil fuels
Fuel production
Gasoline
Handling
Machine learning
Microorganisms
Modelling
Neural networks
Raw materials
Renewable resources
Statistical analysis
Sugarcane
Sustainability
title Artificial Intelligence Application in Bioethanol Production
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T15%3A27%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Artificial%20Intelligence%20Application%20in%20Bioethanol%20Production&rft.jtitle=International%20journal%20of%20energy%20research&rft.au=Owusu,%20Winnie%20A.&rft.date=2023-10-10&rft.volume=2023&rft.spage=1&rft.epage=8&rft.pages=1-8&rft.issn=0363-907X&rft.eissn=1099-114X&rft_id=info:doi/10.1155/2023/7844835&rft_dat=%3Cproquest_cross%3E2879847098%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c337t-eff93b45177714a4b1d2bb8c4cf6c9aa20d04eb44221a833c605fb58e3599b0c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2879847098&rft_id=info:pmid/&rfr_iscdi=true