Loading…

An updated State-of-the-Art Overview of transcriptomic Deconvolution Methods

Although bulk transcriptomic analyses have significantly contributed to an enhanced comprehension of multifaceted diseases, their exploration capacity is impeded by the heterogeneous compositions of biological samples. Indeed, by averaging expression of multiple cell types, RNA-Seq analysis is obliv...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2023-10
Main Authors: Bastien Chassagnol, Nuel, Grégory, Becht, Etienne
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Although bulk transcriptomic analyses have significantly contributed to an enhanced comprehension of multifaceted diseases, their exploration capacity is impeded by the heterogeneous compositions of biological samples. Indeed, by averaging expression of multiple cell types, RNA-Seq analysis is oblivious to variations in cellular changes, hindering the identification of the internal constituents of tissues, involved in disease progression. On the other hand, single-cell techniques are still time, manpower and resource-consuming analyses.To address the intrinsic limitations of both bulk and single-cell methodologies, computational deconvolution techniques have been developed to estimate the frequencies of cell subtypes within complex tissues. These methods are especially valuable for dissecting intricate tissue niches, with a particular focus on tumour microenvironments (TME).In this paper, we offer a comprehensive overview of deconvolution techniques, classifying them based on their methodological characteristics, the type of prior knowledge required for the algorithm, and the statistical constraints they address. Within each category identified, we delve into the theoretical aspects for implementing the underlying method, while providing an in-depth discussion of their main advantages and disadvantages in supplementary materials.Notably, we emphasise the advantages of cutting-edge deconvolution tools based on probabilistic models, as they offer robust statistical frameworks that closely align with biological realities. We anticipate that this review will provide valuable guidelines for computational bioinformaticians in order to select the appropriate method in alignment with their statistical and biological objectives.We ultimately end this review by discussing open challenges that must be addressed to accurately quantify closely related cell types from RNA sequencing data, and the complementary role of single-cell RNA-Seq to that purpose.
ISSN:2331-8422