Loading…
Universal representation by Boltzmann machines with Regularised Axons
It is widely known that Boltzmann machines are capable of representing arbitrary probability distributions over the values of their visible neurons, given enough hidden ones. However, sampling -- and thus training -- these models can be numerically hard. Recently we proposed a regularisation of the...
Saved in:
Published in: | arXiv.org 2023-11 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Grzybowski, Przemysław R Jankiewicz, Antoni Piñol, Eloy Cirauqui, David Grzybowska, Dorota H Petrykowski, Paweł M García-March, Miguel Ángel Lewenstein, Maciej Muñoz-Gil, Gorka Pozas-Kerstjens, Alejandro |
description | It is widely known that Boltzmann machines are capable of representing arbitrary probability distributions over the values of their visible neurons, given enough hidden ones. However, sampling -- and thus training -- these models can be numerically hard. Recently we proposed a regularisation of the connections of Boltzmann machines, in order to control the energy landscape of the model, paving a way for efficient sampling and training. Here we formally prove that such regularised Boltzmann machines preserve the ability to represent arbitrary distributions. This is in conjunction with controlling the number of energy local minima, thus enabling easy \emph{guided} sampling and training. Furthermore, we explicitly show that regularised Boltzmann machines can store exponentially many arbitrarily correlated visible patterns with perfect retrieval, and we connect them to the Dense Associative Memory networks. |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2881058222</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2881058222</sourcerecordid><originalsourceid>FETCH-proquest_journals_28810582223</originalsourceid><addsrcrecordid>eNqNyr0KwjAUQOEgCBbtOwScC-mN1awqFWfRuUS92pQ0qbmpf0-vgw_gdIbvDFgCUuaZmgGMWErUCCFgvoCikAkrD87cMZC2PGAXkNBFHY13_PjiK2_ju9XO8VafauOQ-MPEmu_w2lsdDOGZL5_e0YQNL9oSpr-O2XRT7tfbrAv-1iPFqvF9cF-qQKlcFAoA5H_XB_BEO7Y</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2881058222</pqid></control><display><type>article</type><title>Universal representation by Boltzmann machines with Regularised Axons</title><source>ProQuest - Publicly Available Content Database</source><creator>Grzybowski, Przemysław R ; Jankiewicz, Antoni ; Piñol, Eloy ; Cirauqui, David ; Grzybowska, Dorota H ; Petrykowski, Paweł M ; García-March, Miguel Ángel ; Lewenstein, Maciej ; Muñoz-Gil, Gorka ; Pozas-Kerstjens, Alejandro</creator><creatorcontrib>Grzybowski, Przemysław R ; Jankiewicz, Antoni ; Piñol, Eloy ; Cirauqui, David ; Grzybowska, Dorota H ; Petrykowski, Paweł M ; García-March, Miguel Ángel ; Lewenstein, Maciej ; Muñoz-Gil, Gorka ; Pozas-Kerstjens, Alejandro</creatorcontrib><description>It is widely known that Boltzmann machines are capable of representing arbitrary probability distributions over the values of their visible neurons, given enough hidden ones. However, sampling -- and thus training -- these models can be numerically hard. Recently we proposed a regularisation of the connections of Boltzmann machines, in order to control the energy landscape of the model, paving a way for efficient sampling and training. Here we formally prove that such regularised Boltzmann machines preserve the ability to represent arbitrary distributions. This is in conjunction with controlling the number of energy local minima, thus enabling easy \emph{guided} sampling and training. Furthermore, we explicitly show that regularised Boltzmann machines can store exponentially many arbitrarily correlated visible patterns with perfect retrieval, and we connect them to the Dense Associative Memory networks.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Associative memory ; Axons ; Regularization ; Sampling ; Training</subject><ispartof>arXiv.org, 2023-11</ispartof><rights>2023. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2881058222?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25751,37010,44588</link.rule.ids></links><search><creatorcontrib>Grzybowski, Przemysław R</creatorcontrib><creatorcontrib>Jankiewicz, Antoni</creatorcontrib><creatorcontrib>Piñol, Eloy</creatorcontrib><creatorcontrib>Cirauqui, David</creatorcontrib><creatorcontrib>Grzybowska, Dorota H</creatorcontrib><creatorcontrib>Petrykowski, Paweł M</creatorcontrib><creatorcontrib>García-March, Miguel Ángel</creatorcontrib><creatorcontrib>Lewenstein, Maciej</creatorcontrib><creatorcontrib>Muñoz-Gil, Gorka</creatorcontrib><creatorcontrib>Pozas-Kerstjens, Alejandro</creatorcontrib><title>Universal representation by Boltzmann machines with Regularised Axons</title><title>arXiv.org</title><description>It is widely known that Boltzmann machines are capable of representing arbitrary probability distributions over the values of their visible neurons, given enough hidden ones. However, sampling -- and thus training -- these models can be numerically hard. Recently we proposed a regularisation of the connections of Boltzmann machines, in order to control the energy landscape of the model, paving a way for efficient sampling and training. Here we formally prove that such regularised Boltzmann machines preserve the ability to represent arbitrary distributions. This is in conjunction with controlling the number of energy local minima, thus enabling easy \emph{guided} sampling and training. Furthermore, we explicitly show that regularised Boltzmann machines can store exponentially many arbitrarily correlated visible patterns with perfect retrieval, and we connect them to the Dense Associative Memory networks.</description><subject>Associative memory</subject><subject>Axons</subject><subject>Regularization</subject><subject>Sampling</subject><subject>Training</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNyr0KwjAUQOEgCBbtOwScC-mN1awqFWfRuUS92pQ0qbmpf0-vgw_gdIbvDFgCUuaZmgGMWErUCCFgvoCikAkrD87cMZC2PGAXkNBFHY13_PjiK2_ju9XO8VafauOQ-MPEmu_w2lsdDOGZL5_e0YQNL9oSpr-O2XRT7tfbrAv-1iPFqvF9cF-qQKlcFAoA5H_XB_BEO7Y</recordid><startdate>20231130</startdate><enddate>20231130</enddate><creator>Grzybowski, Przemysław R</creator><creator>Jankiewicz, Antoni</creator><creator>Piñol, Eloy</creator><creator>Cirauqui, David</creator><creator>Grzybowska, Dorota H</creator><creator>Petrykowski, Paweł M</creator><creator>García-March, Miguel Ángel</creator><creator>Lewenstein, Maciej</creator><creator>Muñoz-Gil, Gorka</creator><creator>Pozas-Kerstjens, Alejandro</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20231130</creationdate><title>Universal representation by Boltzmann machines with Regularised Axons</title><author>Grzybowski, Przemysław R ; Jankiewicz, Antoni ; Piñol, Eloy ; Cirauqui, David ; Grzybowska, Dorota H ; Petrykowski, Paweł M ; García-March, Miguel Ángel ; Lewenstein, Maciej ; Muñoz-Gil, Gorka ; Pozas-Kerstjens, Alejandro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_28810582223</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Associative memory</topic><topic>Axons</topic><topic>Regularization</topic><topic>Sampling</topic><topic>Training</topic><toplevel>online_resources</toplevel><creatorcontrib>Grzybowski, Przemysław R</creatorcontrib><creatorcontrib>Jankiewicz, Antoni</creatorcontrib><creatorcontrib>Piñol, Eloy</creatorcontrib><creatorcontrib>Cirauqui, David</creatorcontrib><creatorcontrib>Grzybowska, Dorota H</creatorcontrib><creatorcontrib>Petrykowski, Paweł M</creatorcontrib><creatorcontrib>García-March, Miguel Ángel</creatorcontrib><creatorcontrib>Lewenstein, Maciej</creatorcontrib><creatorcontrib>Muñoz-Gil, Gorka</creatorcontrib><creatorcontrib>Pozas-Kerstjens, Alejandro</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest - Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Grzybowski, Przemysław R</au><au>Jankiewicz, Antoni</au><au>Piñol, Eloy</au><au>Cirauqui, David</au><au>Grzybowska, Dorota H</au><au>Petrykowski, Paweł M</au><au>García-March, Miguel Ángel</au><au>Lewenstein, Maciej</au><au>Muñoz-Gil, Gorka</au><au>Pozas-Kerstjens, Alejandro</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Universal representation by Boltzmann machines with Regularised Axons</atitle><jtitle>arXiv.org</jtitle><date>2023-11-30</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>It is widely known that Boltzmann machines are capable of representing arbitrary probability distributions over the values of their visible neurons, given enough hidden ones. However, sampling -- and thus training -- these models can be numerically hard. Recently we proposed a regularisation of the connections of Boltzmann machines, in order to control the energy landscape of the model, paving a way for efficient sampling and training. Here we formally prove that such regularised Boltzmann machines preserve the ability to represent arbitrary distributions. This is in conjunction with controlling the number of energy local minima, thus enabling easy \emph{guided} sampling and training. Furthermore, we explicitly show that regularised Boltzmann machines can store exponentially many arbitrarily correlated visible patterns with perfect retrieval, and we connect them to the Dense Associative Memory networks.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2023-11 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2881058222 |
source | ProQuest - Publicly Available Content Database |
subjects | Associative memory Axons Regularization Sampling Training |
title | Universal representation by Boltzmann machines with Regularised Axons |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T14%3A40%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Universal%20representation%20by%20Boltzmann%20machines%20with%20Regularised%20Axons&rft.jtitle=arXiv.org&rft.au=Grzybowski,%20Przemys%C5%82aw%20R&rft.date=2023-11-30&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2881058222%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_28810582223%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2881058222&rft_id=info:pmid/&rfr_iscdi=true |