Loading…
Dual selective knowledge transfer for few-shot classification
Few-shot learning aims at recognizing novel visual categories from very few labelled examples. Different from the existing few-shot classification methods that are mainly based on metric learning or meta-learning, in this work we focus on improving the representation capacity of feature extractors....
Saved in:
Published in: | Applied intelligence (Dordrecht, Netherlands) Netherlands), 2023-11, Vol.53 (22), p.27779-27789 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c314t-aa9125bd9348575f18d74dd0a4c3428874e09f662c0557f87234a14f0d482bc83 |
container_end_page | 27789 |
container_issue | 22 |
container_start_page | 27779 |
container_title | Applied intelligence (Dordrecht, Netherlands) |
container_volume | 53 |
creator | He, Kai Pu, Nan Lao, Mingrui Bakker, Erwin M. Lew, Michael S. |
description | Few-shot learning aims at recognizing novel visual categories from very few labelled examples. Different from the existing few-shot classification methods that are mainly based on metric learning or meta-learning, in this work we focus on improving the representation capacity of feature extractors. For this purpose, we propose a new two-stage dual selective knowledge transfer (DSKT) framework, to guide models towards better optimization. Specifically, we first exploit an improved multi-task learning approach to train a feature extractor with robust representation capability as a teacher model. Then, we design an effective dual selective knowledge distillation method, which enables the student model to selectively learn knowledge from the teacher model and current samples, thereby improving the student model’s ability to generalize on unseen classes. Extensive experimental results show that our DSKT achieves competitive performances on four well-known few-shot classification benchmarks. |
doi_str_mv | 10.1007/s10489-023-04994-7 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2881542624</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2881542624</sourcerecordid><originalsourceid>FETCH-LOGICAL-c314t-aa9125bd9348575f18d74dd0a4c3428874e09f662c0557f87234a14f0d482bc83</originalsourceid><addsrcrecordid>eNp9kMFKAzEURYMoWKs_4GrAdfQleZkkCxdSrQoFNwruQppJ6tRxpiZTi3_v6AjuXDzu5p774BByyuCcAaiLzAC1ocAFBTQGqdojEyaVoAqN2icTMBxpWZrnQ3KU8xoAhAA2IZfXW9cUOTTB9_VHKF7bbteEahWKPrk2x5CK2A0XdjS_dH3hG5dzHWvv-rprj8lBdE0OJ785JU_zm8fZHV083N7PrhbUC4Y9dc4wLpeVEailkpHpSmFVgUMvkGutMICJZck9SKmiVlygYxihQs2XXospORt3N6l734bc23W3Te3w0g44k8hLjkOLjy2fupxTiHaT6jeXPi0D-63JjprsoMn-aLJqgMQI5aHcrkL6m_6H-gJ1WGm9</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2881542624</pqid></control><display><type>article</type><title>Dual selective knowledge transfer for few-shot classification</title><source>ABI/INFORM global</source><source>Springer Nature</source><creator>He, Kai ; Pu, Nan ; Lao, Mingrui ; Bakker, Erwin M. ; Lew, Michael S.</creator><creatorcontrib>He, Kai ; Pu, Nan ; Lao, Mingrui ; Bakker, Erwin M. ; Lew, Michael S.</creatorcontrib><description>Few-shot learning aims at recognizing novel visual categories from very few labelled examples. Different from the existing few-shot classification methods that are mainly based on metric learning or meta-learning, in this work we focus on improving the representation capacity of feature extractors. For this purpose, we propose a new two-stage dual selective knowledge transfer (DSKT) framework, to guide models towards better optimization. Specifically, we first exploit an improved multi-task learning approach to train a feature extractor with robust representation capability as a teacher model. Then, we design an effective dual selective knowledge distillation method, which enables the student model to selectively learn knowledge from the teacher model and current samples, thereby improving the student model’s ability to generalize on unseen classes. Extensive experimental results show that our DSKT achieves competitive performances on four well-known few-shot classification benchmarks.</description><identifier>ISSN: 0924-669X</identifier><identifier>EISSN: 1573-7497</identifier><identifier>DOI: 10.1007/s10489-023-04994-7</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Artificial Intelligence ; Classification ; Computer Science ; Datasets ; Deep learning ; Distillation ; Feature extraction ; Knowledge ; Knowledge management ; Learning ; Machines ; Manufacturing ; Mechanical Engineering ; Optimization ; Processes ; Representations ; Teachers</subject><ispartof>Applied intelligence (Dordrecht, Netherlands), 2023-11, Vol.53 (22), p.27779-27789</ispartof><rights>The Author(s) 2023</rights><rights>The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c314t-aa9125bd9348575f18d74dd0a4c3428874e09f662c0557f87234a14f0d482bc83</cites><orcidid>0000-0002-6035-7787</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2881542624/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2881542624?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,11688,27924,27925,36060,44363,74895</link.rule.ids></links><search><creatorcontrib>He, Kai</creatorcontrib><creatorcontrib>Pu, Nan</creatorcontrib><creatorcontrib>Lao, Mingrui</creatorcontrib><creatorcontrib>Bakker, Erwin M.</creatorcontrib><creatorcontrib>Lew, Michael S.</creatorcontrib><title>Dual selective knowledge transfer for few-shot classification</title><title>Applied intelligence (Dordrecht, Netherlands)</title><addtitle>Appl Intell</addtitle><description>Few-shot learning aims at recognizing novel visual categories from very few labelled examples. Different from the existing few-shot classification methods that are mainly based on metric learning or meta-learning, in this work we focus on improving the representation capacity of feature extractors. For this purpose, we propose a new two-stage dual selective knowledge transfer (DSKT) framework, to guide models towards better optimization. Specifically, we first exploit an improved multi-task learning approach to train a feature extractor with robust representation capability as a teacher model. Then, we design an effective dual selective knowledge distillation method, which enables the student model to selectively learn knowledge from the teacher model and current samples, thereby improving the student model’s ability to generalize on unseen classes. Extensive experimental results show that our DSKT achieves competitive performances on four well-known few-shot classification benchmarks.</description><subject>Artificial Intelligence</subject><subject>Classification</subject><subject>Computer Science</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>Distillation</subject><subject>Feature extraction</subject><subject>Knowledge</subject><subject>Knowledge management</subject><subject>Learning</subject><subject>Machines</subject><subject>Manufacturing</subject><subject>Mechanical Engineering</subject><subject>Optimization</subject><subject>Processes</subject><subject>Representations</subject><subject>Teachers</subject><issn>0924-669X</issn><issn>1573-7497</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNp9kMFKAzEURYMoWKs_4GrAdfQleZkkCxdSrQoFNwruQppJ6tRxpiZTi3_v6AjuXDzu5p774BByyuCcAaiLzAC1ocAFBTQGqdojEyaVoAqN2icTMBxpWZrnQ3KU8xoAhAA2IZfXW9cUOTTB9_VHKF7bbteEahWKPrk2x5CK2A0XdjS_dH3hG5dzHWvv-rprj8lBdE0OJ785JU_zm8fZHV083N7PrhbUC4Y9dc4wLpeVEailkpHpSmFVgUMvkGutMICJZck9SKmiVlygYxihQs2XXospORt3N6l734bc23W3Te3w0g44k8hLjkOLjy2fupxTiHaT6jeXPi0D-63JjprsoMn-aLJqgMQI5aHcrkL6m_6H-gJ1WGm9</recordid><startdate>20231101</startdate><enddate>20231101</enddate><creator>He, Kai</creator><creator>Pu, Nan</creator><creator>Lao, Mingrui</creator><creator>Bakker, Erwin M.</creator><creator>Lew, Michael S.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-6035-7787</orcidid></search><sort><creationdate>20231101</creationdate><title>Dual selective knowledge transfer for few-shot classification</title><author>He, Kai ; Pu, Nan ; Lao, Mingrui ; Bakker, Erwin M. ; Lew, Michael S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c314t-aa9125bd9348575f18d74dd0a4c3428874e09f662c0557f87234a14f0d482bc83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Artificial Intelligence</topic><topic>Classification</topic><topic>Computer Science</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>Distillation</topic><topic>Feature extraction</topic><topic>Knowledge</topic><topic>Knowledge management</topic><topic>Learning</topic><topic>Machines</topic><topic>Manufacturing</topic><topic>Mechanical Engineering</topic><topic>Optimization</topic><topic>Processes</topic><topic>Representations</topic><topic>Teachers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>He, Kai</creatorcontrib><creatorcontrib>Pu, Nan</creatorcontrib><creatorcontrib>Lao, Mingrui</creatorcontrib><creatorcontrib>Bakker, Erwin M.</creatorcontrib><creatorcontrib>Lew, Michael S.</creatorcontrib><collection>SpringerOpen</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest_ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>ProQuest Central</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer science database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM global</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><jtitle>Applied intelligence (Dordrecht, Netherlands)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>He, Kai</au><au>Pu, Nan</au><au>Lao, Mingrui</au><au>Bakker, Erwin M.</au><au>Lew, Michael S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dual selective knowledge transfer for few-shot classification</atitle><jtitle>Applied intelligence (Dordrecht, Netherlands)</jtitle><stitle>Appl Intell</stitle><date>2023-11-01</date><risdate>2023</risdate><volume>53</volume><issue>22</issue><spage>27779</spage><epage>27789</epage><pages>27779-27789</pages><issn>0924-669X</issn><eissn>1573-7497</eissn><abstract>Few-shot learning aims at recognizing novel visual categories from very few labelled examples. Different from the existing few-shot classification methods that are mainly based on metric learning or meta-learning, in this work we focus on improving the representation capacity of feature extractors. For this purpose, we propose a new two-stage dual selective knowledge transfer (DSKT) framework, to guide models towards better optimization. Specifically, we first exploit an improved multi-task learning approach to train a feature extractor with robust representation capability as a teacher model. Then, we design an effective dual selective knowledge distillation method, which enables the student model to selectively learn knowledge from the teacher model and current samples, thereby improving the student model’s ability to generalize on unseen classes. Extensive experimental results show that our DSKT achieves competitive performances on four well-known few-shot classification benchmarks.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10489-023-04994-7</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-6035-7787</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0924-669X |
ispartof | Applied intelligence (Dordrecht, Netherlands), 2023-11, Vol.53 (22), p.27779-27789 |
issn | 0924-669X 1573-7497 |
language | eng |
recordid | cdi_proquest_journals_2881542624 |
source | ABI/INFORM global; Springer Nature |
subjects | Artificial Intelligence Classification Computer Science Datasets Deep learning Distillation Feature extraction Knowledge Knowledge management Learning Machines Manufacturing Mechanical Engineering Optimization Processes Representations Teachers |
title | Dual selective knowledge transfer for few-shot classification |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T15%3A25%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dual%20selective%20knowledge%20transfer%20for%20few-shot%20classification&rft.jtitle=Applied%20intelligence%20(Dordrecht,%20Netherlands)&rft.au=He,%20Kai&rft.date=2023-11-01&rft.volume=53&rft.issue=22&rft.spage=27779&rft.epage=27789&rft.pages=27779-27789&rft.issn=0924-669X&rft.eissn=1573-7497&rft_id=info:doi/10.1007/s10489-023-04994-7&rft_dat=%3Cproquest_cross%3E2881542624%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c314t-aa9125bd9348575f18d74dd0a4c3428874e09f662c0557f87234a14f0d482bc83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2881542624&rft_id=info:pmid/&rfr_iscdi=true |