Loading…
Anisotropic pressure effects on nanoconfined water within narrow graphene slit pores
There is an increasing interest toward disclosing and explaining confinement effects on liquids, such as water or aqueous solutions, in slit pore setups. Particularly puzzling are the changes of physical and chemical properties in the nanoconfinement regime where no bulk-like water phase exists betw...
Saved in:
Published in: | Physical chemistry chemical physics : PCCP 2023-10, Vol.25 (41), p.28119-28129 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | There is an increasing interest toward disclosing and explaining confinement effects on liquids, such as water or aqueous solutions, in slit pore setups. Particularly puzzling are the changes of physical and chemical properties in the nanoconfinement regime where no bulk-like water phase exists between the two interfacial water layers such that the density profile across the slit pore becomes highly stratified, ultimately leading to bilayer and monolayer water. These changes must be quantified with respect to some meaningful reference state of water, the most natural one being bulk water at the same pressure and temperature conditions. However, bulk water is a homogeneous liquid with isotropic properties, whereas water confined in slit pores is inhomogeneous, implying anisotropic properties as described by the perpendicular and parallel components of the respective tensors. In the case of pressure, the inhomogeneous nature of the setup results in a well-defined difference between the perpendicular and parallel pressure tensor components that is uniquely determined by the interfacial tension being a thermodynamic property. For bilayer water constrained in graphene slit pores that are only about 1 nm wide, we demonstrate that there exists a thermodynamic point where the pressure tensor of the inhomogeneous fluid, nanoconfined water, is effectively isotopic and the pressure is thus scalar as in the homogeneous fluid, bulk water. This specific point of vanishing effective interfacial tension is proposed to serve as a well-defined reference state to compare the properties of nanoconfined liquids to those of the corresponding bulk liquid at the same (isotropic) pressure and temperature conditions. In future work, this idea could be applied to assess confinement effects on chemical reactivity in aqueous solutions as well as to other nanoconfined liquids in other pores such as layered minerals.
For bilayer water in graphene slit pores a thermodynamic point is found where the pressure tensor of the nanoconfined water is effectively isotropic; this can serve as a reference state to compare the properties of nanoconfined liquids to those of the corresponding bulk. |
---|---|
ISSN: | 1463-9076 1463-9084 |
DOI: | 10.1039/d3cp01687k |