Loading…

A Generalization of Reciprocal Exponential Model: Clayton Copula, Statistical Properties and Modeling Skewed and Symmetric Real Data Sets

We introduce a new extension of the reciprocal Exponential distribution for modeling the extreme values. We used the Morgenstern family and the clayton copula for deriving many bivariate and multivariate extensions of the new model. Some of its properties are derived. We assessed the performance of...

Full description

Saved in:
Bibliographic Details
Published in:Pakistan journal of statistics and operation research 2020-06, Vol.16 (2), p.373-386
Main Authors: Mansour, M M, Butt, Nadeem Shafique, Yousof, Haitham M, Ansari, S I, Ibrahim, Mohamed
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c274t-ad83fd6ab7cee4ac8fd5ef4a93b80d18d610b3b2569d462da6ec7edf00b0131f3
cites
container_end_page 386
container_issue 2
container_start_page 373
container_title Pakistan journal of statistics and operation research
container_volume 16
creator Mansour, M M
Butt, Nadeem Shafique
Yousof, Haitham M
Ansari, S I
Ibrahim, Mohamed
description We introduce a new extension of the reciprocal Exponential distribution for modeling the extreme values. We used the Morgenstern family and the clayton copula for deriving many bivariate and multivariate extensions of the new model. Some of its properties are derived. We assessed the performance of the maximum likelihood estimators (MLEs) via a graphical simulation study. The assessment was based on the sample size. The new reciprocal model is employed for modeling the skewed and the symmetric real data sets. The new reciprocal model is better than some other important competitive models in statistical modeling.
doi_str_mv 10.18187/pjsor.v16i2.3298
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2881894553</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2881894553</sourcerecordid><originalsourceid>FETCH-LOGICAL-c274t-ad83fd6ab7cee4ac8fd5ef4a93b80d18d610b3b2569d462da6ec7edf00b0131f3</originalsourceid><addsrcrecordid>eNotkE1OwzAQRi0EElXpAdhZYkuKfxLHYVeFUpCKQATWlRNPkEsaB9sFyg24NYaymtHovfk0g9ApJVMqqcwvhrW3bvpOhWFTzgp5gEaMMZJkkpJDNIqQSFhO6TGaeG9qwkSR04zlI_Q9wwvowanOfKlgbI9tix-hMYOzjerw_HOwPfTBxP7OaugucdmpXYhgaYdtp85xFaLog_nFH5wdwAUDHqte7w3Tv-DqFT5A_82q3WYDwZkmxkTjSgWFKwj-BB21qvMw-a9j9Hw9fypvkuX94racLZOG5WlIlJa81ULVeQOQqka2OoM2VQWvJdFUakFJzWuWiUKngmkloMlBt4TUhHLa8jE62--NF75twYfV2m5dHyNXTMZvFmmWcf4DTDFpTg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2881894553</pqid></control><display><type>article</type><title>A Generalization of Reciprocal Exponential Model: Clayton Copula, Statistical Properties and Modeling Skewed and Symmetric Real Data Sets</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Mansour, M M ; Butt, Nadeem Shafique ; Yousof, Haitham M ; Ansari, S I ; Ibrahim, Mohamed</creator><creatorcontrib>Mansour, M M ; Butt, Nadeem Shafique ; Yousof, Haitham M ; Ansari, S I ; Ibrahim, Mohamed</creatorcontrib><description>We introduce a new extension of the reciprocal Exponential distribution for modeling the extreme values. We used the Morgenstern family and the clayton copula for deriving many bivariate and multivariate extensions of the new model. Some of its properties are derived. We assessed the performance of the maximum likelihood estimators (MLEs) via a graphical simulation study. The assessment was based on the sample size. The new reciprocal model is employed for modeling the skewed and the symmetric real data sets. The new reciprocal model is better than some other important competitive models in statistical modeling.</description><identifier>ISSN: 1816-2711</identifier><identifier>EISSN: 2220-5810</identifier><identifier>DOI: 10.18187/pjsor.v16i2.3298</identifier><language>eng</language><publisher>Lahore: University of the Punjab, College of Statistical &amp; Actuarial Science</publisher><subject>Bivariate analysis ; Datasets ; Extreme values ; Maximum likelihood estimators ; Probability distribution functions ; Random variables ; Statistical models</subject><ispartof>Pakistan journal of statistics and operation research, 2020-06, Vol.16 (2), p.373-386</ispartof><rights>Copyright University of the Punjab, College of Statistical &amp; Actuarial Science 2020</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c274t-ad83fd6ab7cee4ac8fd5ef4a93b80d18d610b3b2569d462da6ec7edf00b0131f3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2881894553?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25751,27922,27923,37010,44588</link.rule.ids></links><search><creatorcontrib>Mansour, M M</creatorcontrib><creatorcontrib>Butt, Nadeem Shafique</creatorcontrib><creatorcontrib>Yousof, Haitham M</creatorcontrib><creatorcontrib>Ansari, S I</creatorcontrib><creatorcontrib>Ibrahim, Mohamed</creatorcontrib><title>A Generalization of Reciprocal Exponential Model: Clayton Copula, Statistical Properties and Modeling Skewed and Symmetric Real Data Sets</title><title>Pakistan journal of statistics and operation research</title><description>We introduce a new extension of the reciprocal Exponential distribution for modeling the extreme values. We used the Morgenstern family and the clayton copula for deriving many bivariate and multivariate extensions of the new model. Some of its properties are derived. We assessed the performance of the maximum likelihood estimators (MLEs) via a graphical simulation study. The assessment was based on the sample size. The new reciprocal model is employed for modeling the skewed and the symmetric real data sets. The new reciprocal model is better than some other important competitive models in statistical modeling.</description><subject>Bivariate analysis</subject><subject>Datasets</subject><subject>Extreme values</subject><subject>Maximum likelihood estimators</subject><subject>Probability distribution functions</subject><subject>Random variables</subject><subject>Statistical models</subject><issn>1816-2711</issn><issn>2220-5810</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotkE1OwzAQRi0EElXpAdhZYkuKfxLHYVeFUpCKQATWlRNPkEsaB9sFyg24NYaymtHovfk0g9ApJVMqqcwvhrW3bvpOhWFTzgp5gEaMMZJkkpJDNIqQSFhO6TGaeG9qwkSR04zlI_Q9wwvowanOfKlgbI9tix-hMYOzjerw_HOwPfTBxP7OaugucdmpXYhgaYdtp85xFaLog_nFH5wdwAUDHqte7w3Tv-DqFT5A_82q3WYDwZkmxkTjSgWFKwj-BB21qvMw-a9j9Hw9fypvkuX94racLZOG5WlIlJa81ULVeQOQqka2OoM2VQWvJdFUakFJzWuWiUKngmkloMlBt4TUhHLa8jE62--NF75twYfV2m5dHyNXTMZvFmmWcf4DTDFpTg</recordid><startdate>20200601</startdate><enddate>20200601</enddate><creator>Mansour, M M</creator><creator>Butt, Nadeem Shafique</creator><creator>Yousof, Haitham M</creator><creator>Ansari, S I</creator><creator>Ibrahim, Mohamed</creator><general>University of the Punjab, College of Statistical &amp; Actuarial Science</general><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20200601</creationdate><title>A Generalization of Reciprocal Exponential Model: Clayton Copula, Statistical Properties and Modeling Skewed and Symmetric Real Data Sets</title><author>Mansour, M M ; Butt, Nadeem Shafique ; Yousof, Haitham M ; Ansari, S I ; Ibrahim, Mohamed</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c274t-ad83fd6ab7cee4ac8fd5ef4a93b80d18d610b3b2569d462da6ec7edf00b0131f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Bivariate analysis</topic><topic>Datasets</topic><topic>Extreme values</topic><topic>Maximum likelihood estimators</topic><topic>Probability distribution functions</topic><topic>Random variables</topic><topic>Statistical models</topic><toplevel>online_resources</toplevel><creatorcontrib>Mansour, M M</creatorcontrib><creatorcontrib>Butt, Nadeem Shafique</creatorcontrib><creatorcontrib>Yousof, Haitham M</creatorcontrib><creatorcontrib>Ansari, S I</creatorcontrib><creatorcontrib>Ibrahim, Mohamed</creatorcontrib><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Pakistan journal of statistics and operation research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mansour, M M</au><au>Butt, Nadeem Shafique</au><au>Yousof, Haitham M</au><au>Ansari, S I</au><au>Ibrahim, Mohamed</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Generalization of Reciprocal Exponential Model: Clayton Copula, Statistical Properties and Modeling Skewed and Symmetric Real Data Sets</atitle><jtitle>Pakistan journal of statistics and operation research</jtitle><date>2020-06-01</date><risdate>2020</risdate><volume>16</volume><issue>2</issue><spage>373</spage><epage>386</epage><pages>373-386</pages><issn>1816-2711</issn><eissn>2220-5810</eissn><abstract>We introduce a new extension of the reciprocal Exponential distribution for modeling the extreme values. We used the Morgenstern family and the clayton copula for deriving many bivariate and multivariate extensions of the new model. Some of its properties are derived. We assessed the performance of the maximum likelihood estimators (MLEs) via a graphical simulation study. The assessment was based on the sample size. The new reciprocal model is employed for modeling the skewed and the symmetric real data sets. The new reciprocal model is better than some other important competitive models in statistical modeling.</abstract><cop>Lahore</cop><pub>University of the Punjab, College of Statistical &amp; Actuarial Science</pub><doi>10.18187/pjsor.v16i2.3298</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1816-2711
ispartof Pakistan journal of statistics and operation research, 2020-06, Vol.16 (2), p.373-386
issn 1816-2711
2220-5810
language eng
recordid cdi_proquest_journals_2881894553
source Publicly Available Content Database (Proquest) (PQ_SDU_P3)
subjects Bivariate analysis
Datasets
Extreme values
Maximum likelihood estimators
Probability distribution functions
Random variables
Statistical models
title A Generalization of Reciprocal Exponential Model: Clayton Copula, Statistical Properties and Modeling Skewed and Symmetric Real Data Sets
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T13%3A40%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Generalization%20of%20Reciprocal%20Exponential%20Model:%20Clayton%20Copula,%20Statistical%20Properties%20and%20Modeling%20Skewed%20and%20Symmetric%20Real%20Data%20Sets&rft.jtitle=Pakistan%20journal%20of%20statistics%20and%20operation%20research&rft.au=Mansour,%20M%20M&rft.date=2020-06-01&rft.volume=16&rft.issue=2&rft.spage=373&rft.epage=386&rft.pages=373-386&rft.issn=1816-2711&rft.eissn=2220-5810&rft_id=info:doi/10.18187/pjsor.v16i2.3298&rft_dat=%3Cproquest%3E2881894553%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c274t-ad83fd6ab7cee4ac8fd5ef4a93b80d18d610b3b2569d462da6ec7edf00b0131f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2881894553&rft_id=info:pmid/&rfr_iscdi=true