Loading…
A Generalization of Reciprocal Exponential Model: Clayton Copula, Statistical Properties and Modeling Skewed and Symmetric Real Data Sets
We introduce a new extension of the reciprocal Exponential distribution for modeling the extreme values. We used the Morgenstern family and the clayton copula for deriving many bivariate and multivariate extensions of the new model. Some of its properties are derived. We assessed the performance of...
Saved in:
Published in: | Pakistan journal of statistics and operation research 2020-06, Vol.16 (2), p.373-386 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c274t-ad83fd6ab7cee4ac8fd5ef4a93b80d18d610b3b2569d462da6ec7edf00b0131f3 |
---|---|
cites | |
container_end_page | 386 |
container_issue | 2 |
container_start_page | 373 |
container_title | Pakistan journal of statistics and operation research |
container_volume | 16 |
creator | Mansour, M M Butt, Nadeem Shafique Yousof, Haitham M Ansari, S I Ibrahim, Mohamed |
description | We introduce a new extension of the reciprocal Exponential distribution for modeling the extreme values. We used the Morgenstern family and the clayton copula for deriving many bivariate and multivariate extensions of the new model. Some of its properties are derived. We assessed the performance of the maximum likelihood estimators (MLEs) via a graphical simulation study. The assessment was based on the sample size. The new reciprocal model is employed for modeling the skewed and the symmetric real data sets. The new reciprocal model is better than some other important competitive models in statistical modeling. |
doi_str_mv | 10.18187/pjsor.v16i2.3298 |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2881894553</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2881894553</sourcerecordid><originalsourceid>FETCH-LOGICAL-c274t-ad83fd6ab7cee4ac8fd5ef4a93b80d18d610b3b2569d462da6ec7edf00b0131f3</originalsourceid><addsrcrecordid>eNotkE1OwzAQRi0EElXpAdhZYkuKfxLHYVeFUpCKQATWlRNPkEsaB9sFyg24NYaymtHovfk0g9ApJVMqqcwvhrW3bvpOhWFTzgp5gEaMMZJkkpJDNIqQSFhO6TGaeG9qwkSR04zlI_Q9wwvowanOfKlgbI9tix-hMYOzjerw_HOwPfTBxP7OaugucdmpXYhgaYdtp85xFaLog_nFH5wdwAUDHqte7w3Tv-DqFT5A_82q3WYDwZkmxkTjSgWFKwj-BB21qvMw-a9j9Hw9fypvkuX94racLZOG5WlIlJa81ULVeQOQqka2OoM2VQWvJdFUakFJzWuWiUKngmkloMlBt4TUhHLa8jE62--NF75twYfV2m5dHyNXTMZvFmmWcf4DTDFpTg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2881894553</pqid></control><display><type>article</type><title>A Generalization of Reciprocal Exponential Model: Clayton Copula, Statistical Properties and Modeling Skewed and Symmetric Real Data Sets</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Mansour, M M ; Butt, Nadeem Shafique ; Yousof, Haitham M ; Ansari, S I ; Ibrahim, Mohamed</creator><creatorcontrib>Mansour, M M ; Butt, Nadeem Shafique ; Yousof, Haitham M ; Ansari, S I ; Ibrahim, Mohamed</creatorcontrib><description>We introduce a new extension of the reciprocal Exponential distribution for modeling the extreme values. We used the Morgenstern family and the clayton copula for deriving many bivariate and multivariate extensions of the new model. Some of its properties are derived. We assessed the performance of the maximum likelihood estimators (MLEs) via a graphical simulation study. The assessment was based on the sample size. The new reciprocal model is employed for modeling the skewed and the symmetric real data sets. The new reciprocal model is better than some other important competitive models in statistical modeling.</description><identifier>ISSN: 1816-2711</identifier><identifier>EISSN: 2220-5810</identifier><identifier>DOI: 10.18187/pjsor.v16i2.3298</identifier><language>eng</language><publisher>Lahore: University of the Punjab, College of Statistical & Actuarial Science</publisher><subject>Bivariate analysis ; Datasets ; Extreme values ; Maximum likelihood estimators ; Probability distribution functions ; Random variables ; Statistical models</subject><ispartof>Pakistan journal of statistics and operation research, 2020-06, Vol.16 (2), p.373-386</ispartof><rights>Copyright University of the Punjab, College of Statistical & Actuarial Science 2020</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c274t-ad83fd6ab7cee4ac8fd5ef4a93b80d18d610b3b2569d462da6ec7edf00b0131f3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2881894553?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25751,27922,27923,37010,44588</link.rule.ids></links><search><creatorcontrib>Mansour, M M</creatorcontrib><creatorcontrib>Butt, Nadeem Shafique</creatorcontrib><creatorcontrib>Yousof, Haitham M</creatorcontrib><creatorcontrib>Ansari, S I</creatorcontrib><creatorcontrib>Ibrahim, Mohamed</creatorcontrib><title>A Generalization of Reciprocal Exponential Model: Clayton Copula, Statistical Properties and Modeling Skewed and Symmetric Real Data Sets</title><title>Pakistan journal of statistics and operation research</title><description>We introduce a new extension of the reciprocal Exponential distribution for modeling the extreme values. We used the Morgenstern family and the clayton copula for deriving many bivariate and multivariate extensions of the new model. Some of its properties are derived. We assessed the performance of the maximum likelihood estimators (MLEs) via a graphical simulation study. The assessment was based on the sample size. The new reciprocal model is employed for modeling the skewed and the symmetric real data sets. The new reciprocal model is better than some other important competitive models in statistical modeling.</description><subject>Bivariate analysis</subject><subject>Datasets</subject><subject>Extreme values</subject><subject>Maximum likelihood estimators</subject><subject>Probability distribution functions</subject><subject>Random variables</subject><subject>Statistical models</subject><issn>1816-2711</issn><issn>2220-5810</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotkE1OwzAQRi0EElXpAdhZYkuKfxLHYVeFUpCKQATWlRNPkEsaB9sFyg24NYaymtHovfk0g9ApJVMqqcwvhrW3bvpOhWFTzgp5gEaMMZJkkpJDNIqQSFhO6TGaeG9qwkSR04zlI_Q9wwvowanOfKlgbI9tix-hMYOzjerw_HOwPfTBxP7OaugucdmpXYhgaYdtp85xFaLog_nFH5wdwAUDHqte7w3Tv-DqFT5A_82q3WYDwZkmxkTjSgWFKwj-BB21qvMw-a9j9Hw9fypvkuX94racLZOG5WlIlJa81ULVeQOQqka2OoM2VQWvJdFUakFJzWuWiUKngmkloMlBt4TUhHLa8jE62--NF75twYfV2m5dHyNXTMZvFmmWcf4DTDFpTg</recordid><startdate>20200601</startdate><enddate>20200601</enddate><creator>Mansour, M M</creator><creator>Butt, Nadeem Shafique</creator><creator>Yousof, Haitham M</creator><creator>Ansari, S I</creator><creator>Ibrahim, Mohamed</creator><general>University of the Punjab, College of Statistical & Actuarial Science</general><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20200601</creationdate><title>A Generalization of Reciprocal Exponential Model: Clayton Copula, Statistical Properties and Modeling Skewed and Symmetric Real Data Sets</title><author>Mansour, M M ; Butt, Nadeem Shafique ; Yousof, Haitham M ; Ansari, S I ; Ibrahim, Mohamed</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c274t-ad83fd6ab7cee4ac8fd5ef4a93b80d18d610b3b2569d462da6ec7edf00b0131f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Bivariate analysis</topic><topic>Datasets</topic><topic>Extreme values</topic><topic>Maximum likelihood estimators</topic><topic>Probability distribution functions</topic><topic>Random variables</topic><topic>Statistical models</topic><toplevel>online_resources</toplevel><creatorcontrib>Mansour, M M</creatorcontrib><creatorcontrib>Butt, Nadeem Shafique</creatorcontrib><creatorcontrib>Yousof, Haitham M</creatorcontrib><creatorcontrib>Ansari, S I</creatorcontrib><creatorcontrib>Ibrahim, Mohamed</creatorcontrib><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Pakistan journal of statistics and operation research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mansour, M M</au><au>Butt, Nadeem Shafique</au><au>Yousof, Haitham M</au><au>Ansari, S I</au><au>Ibrahim, Mohamed</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Generalization of Reciprocal Exponential Model: Clayton Copula, Statistical Properties and Modeling Skewed and Symmetric Real Data Sets</atitle><jtitle>Pakistan journal of statistics and operation research</jtitle><date>2020-06-01</date><risdate>2020</risdate><volume>16</volume><issue>2</issue><spage>373</spage><epage>386</epage><pages>373-386</pages><issn>1816-2711</issn><eissn>2220-5810</eissn><abstract>We introduce a new extension of the reciprocal Exponential distribution for modeling the extreme values. We used the Morgenstern family and the clayton copula for deriving many bivariate and multivariate extensions of the new model. Some of its properties are derived. We assessed the performance of the maximum likelihood estimators (MLEs) via a graphical simulation study. The assessment was based on the sample size. The new reciprocal model is employed for modeling the skewed and the symmetric real data sets. The new reciprocal model is better than some other important competitive models in statistical modeling.</abstract><cop>Lahore</cop><pub>University of the Punjab, College of Statistical & Actuarial Science</pub><doi>10.18187/pjsor.v16i2.3298</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1816-2711 |
ispartof | Pakistan journal of statistics and operation research, 2020-06, Vol.16 (2), p.373-386 |
issn | 1816-2711 2220-5810 |
language | eng |
recordid | cdi_proquest_journals_2881894553 |
source | Publicly Available Content Database (Proquest) (PQ_SDU_P3) |
subjects | Bivariate analysis Datasets Extreme values Maximum likelihood estimators Probability distribution functions Random variables Statistical models |
title | A Generalization of Reciprocal Exponential Model: Clayton Copula, Statistical Properties and Modeling Skewed and Symmetric Real Data Sets |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T13%3A40%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Generalization%20of%20Reciprocal%20Exponential%20Model:%20Clayton%20Copula,%20Statistical%20Properties%20and%20Modeling%20Skewed%20and%20Symmetric%20Real%20Data%20Sets&rft.jtitle=Pakistan%20journal%20of%20statistics%20and%20operation%20research&rft.au=Mansour,%20M%20M&rft.date=2020-06-01&rft.volume=16&rft.issue=2&rft.spage=373&rft.epage=386&rft.pages=373-386&rft.issn=1816-2711&rft.eissn=2220-5810&rft_id=info:doi/10.18187/pjsor.v16i2.3298&rft_dat=%3Cproquest%3E2881894553%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c274t-ad83fd6ab7cee4ac8fd5ef4a93b80d18d610b3b2569d462da6ec7edf00b0131f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2881894553&rft_id=info:pmid/&rfr_iscdi=true |