Loading…
Enzymatic Glycosylation Strategies in the Production of Bioactive Compounds
Enzymatic glycosylation is a versatile and sustainable biotechnological approach that plays a pivotal role in the production of bioactive compounds. This process involves the enzymatic transfer of sugar moieties onto various acceptor molecules, such as small molecules, peptides, or proteins, resulti...
Saved in:
Published in: | Catalysts 2023-10, Vol.13 (10), p.1359 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Enzymatic glycosylation is a versatile and sustainable biotechnological approach that plays a pivotal role in the production of bioactive compounds. This process involves the enzymatic transfer of sugar moieties onto various acceptor molecules, such as small molecules, peptides, or proteins, resulting in the synthesis of glycosides. These glycosides often exhibit enhanced bioactivity, improved solubility, and enhanced stability, making them valuable in pharmaceuticals, nutraceuticals, and the food industry. This review explores the diverse enzymatic glycosylation strategies employed in the synthesis of bioactive compounds. It highlights the enzymatic catalysts involved, including glycosyltransferases, glycosidases, glycophosphorylases, and glycosynthases. It considers the advantages and disadvantages of these biocatalysts in the stereoselective and regioselective synthesis of different types of glycosylated molecules, phenolic and aliphatic alcohols, oligosaccharides, polysaccharides, glycoderivatives, glycopeptides, and glycoproteins with a clear focus on food and pharmaceutical chemistry. Furthermore, the review outlines various sources of sugar donors, activated glycosides, and sugar nucleotides, as well as the utilization of engineered enzymes and microorganisms for glycosylation reactions. The advantages of enzymatic glycosylation, including its high regioselectivity, stereoselectivity, and sustainability, are emphasized. Therefore, these approaches combining the use of different catalytic systems, the improvement of tools such as immobilization technology or chemical or genetic modification to improve the glycosylation process, could be useful tools in continuous biotechnological advancements. |
---|---|
ISSN: | 2073-4344 2073-4344 |
DOI: | 10.3390/catal13101359 |