Loading…

Highly sensitive self-powered piezoelectric poly(vinylidene fluoride)-based nanofibrous mat containing microporous metal–organic framework nanostructures for energy harvesting applications

Developing highly sensitive flexible piezoelectric sensor for wearable electronic devices have received considerable attention due to their promising application in physiological monitoring. Therefore, many research studies are conducted to enhance the piezoelectric response of poly(vinylidene fluor...

Full description

Saved in:
Bibliographic Details
Published in:Applied physics. A, Materials science & processing Materials science & processing, 2023-11, Vol.129 (11), Article 801
Main Authors: Atighi, Milad, Hasanzadeh, Mahdi
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Developing highly sensitive flexible piezoelectric sensor for wearable electronic devices have received considerable attention due to their promising application in physiological monitoring. Therefore, many research studies are conducted to enhance the piezoelectric response of poly(vinylidene fluoride) (PVDF)-based membrane. In this work, we present a novel flexible piezoelectric PVDF-based sensor with high-pressure sensitivity induced by the incorporation of microporous metal–organic framework (MOF) particles. Scanning electron microscopy images indicated the formation of uniform and bead-free PVDF/MOF nanofibrous composite with an average diameter of 173–241 nm. In this design, the microporous MOF crystals extremely enhanced the polar β-phase content of PVDF nanofibers by 20% without significant loss in its flexibility and synergistically promoted the piezoelectric performance of PVDF-based sensor. The PVDF nanofibers containing 1 wt% MOF crystals showed a peak-to-peak voltage of 3.84 V under an applied force of 2.5 N, which was superior to that of pristine PVDF nanofibers by 32%. Furthermore, the practical application of the developed PVDF/MOF nanofiber-based piezoelectric sensor was demonstrated for detecting human activities, showing a maximum output voltage of 2.08 V (for finger tapping), 5.92 V (for hand punching), and 20.66 V (for heel strike). The self-powered and highly sensitive PVDF/MOF nanofiber-based piezoelectric sensor also exhibits excellent long-term working stability with no obvious responsivity attenuation. The results of this work provide new insights for the development of next-generation piezoelectric sensors and energy harvesting systems. Graphical abstract A novel flexible piezoelectric PVDF-based nanogenerator with high-pressure sensitivity induced by the incorporation of microporous MOF particles. The piezoelectric response of the developed PVDF/MOF nanogenerator indicated superior output voltage and sensitivity than most of the reported PVDF-based nanogenerators.
ISSN:0947-8396
1432-0630
DOI:10.1007/s00339-023-07080-4