Loading…
Probing the Schroedinger-Newton equation in a Stern-Gerlach interferometer
Explaining the behavior of macroscopic objects from the point of view of the quantum paradigm has challenged the scientific community for a century today. A mechanism of gravitational self-interaction, governed by the so-called Schroedinger-Newton equation, is among the proposals that aim to shed so...
Saved in:
Published in: | arXiv.org 2024-03 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Explaining the behavior of macroscopic objects from the point of view of the quantum paradigm has challenged the scientific community for a century today. A mechanism of gravitational self-interaction, governed by the so-called Schroedinger-Newton equation, is among the proposals that aim to shed some light on it. Despite all efforts, this mechanism has been proven difficult to probe. Here, we consider a simple Stern-Gerlach-like experiment to try it out. The Schroedinger-Newton equation can be analytically solved under certain proper conditions, and a dephasing effect induced by the gravitational self-interacting potential can be calculated. |
---|---|
ISSN: | 2331-8422 |
DOI: | 10.48550/arxiv.2310.18072 |