Loading…
Visual Explanations via Iterated Integrated Attributions
We introduce Iterated Integrated Attributions (IIA) - a generic method for explaining the predictions of vision models. IIA employs iterative integration across the input image, the internal representations generated by the model, and their gradients, yielding precise and focused explanation maps. W...
Saved in:
Published in: | arXiv.org 2023-10 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Barkan, Oren Yehonatan Elisha Asher, Yuval Eshel, Amit Koenigstein, Noam |
description | We introduce Iterated Integrated Attributions (IIA) - a generic method for explaining the predictions of vision models. IIA employs iterative integration across the input image, the internal representations generated by the model, and their gradients, yielding precise and focused explanation maps. We demonstrate the effectiveness of IIA through comprehensive evaluations across various tasks, datasets, and network architectures. Our results showcase that IIA produces accurate explanation maps, outperforming other state-of-the-art explanation techniques. |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2884474344</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2884474344</sourcerecordid><originalsourceid>FETCH-proquest_journals_28844743443</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSwCMssLk3MUXCtKMhJzEssyczPK1Yoy0xU8CxJLUosSU1R8MwrSU2HMB1LSooyk0rBingYWNMSc4pTeaE0N4Oym2uIs4duQVF-YWlqcUl8Vn5pUR5QKt7IwsLExNzE2MTEmDhVAIDXNqg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2884474344</pqid></control><display><type>article</type><title>Visual Explanations via Iterated Integrated Attributions</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Barkan, Oren ; Yehonatan Elisha ; Asher, Yuval ; Eshel, Amit ; Koenigstein, Noam</creator><creatorcontrib>Barkan, Oren ; Yehonatan Elisha ; Asher, Yuval ; Eshel, Amit ; Koenigstein, Noam</creatorcontrib><description>We introduce Iterated Integrated Attributions (IIA) - a generic method for explaining the predictions of vision models. IIA employs iterative integration across the input image, the internal representations generated by the model, and their gradients, yielding precise and focused explanation maps. We demonstrate the effectiveness of IIA through comprehensive evaluations across various tasks, datasets, and network architectures. Our results showcase that IIA produces accurate explanation maps, outperforming other state-of-the-art explanation techniques.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Iterative methods</subject><ispartof>arXiv.org, 2023-10</ispartof><rights>2023. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2884474344?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,37012,44590</link.rule.ids></links><search><creatorcontrib>Barkan, Oren</creatorcontrib><creatorcontrib>Yehonatan Elisha</creatorcontrib><creatorcontrib>Asher, Yuval</creatorcontrib><creatorcontrib>Eshel, Amit</creatorcontrib><creatorcontrib>Koenigstein, Noam</creatorcontrib><title>Visual Explanations via Iterated Integrated Attributions</title><title>arXiv.org</title><description>We introduce Iterated Integrated Attributions (IIA) - a generic method for explaining the predictions of vision models. IIA employs iterative integration across the input image, the internal representations generated by the model, and their gradients, yielding precise and focused explanation maps. We demonstrate the effectiveness of IIA through comprehensive evaluations across various tasks, datasets, and network architectures. Our results showcase that IIA produces accurate explanation maps, outperforming other state-of-the-art explanation techniques.</description><subject>Iterative methods</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSwCMssLk3MUXCtKMhJzEssyczPK1Yoy0xU8CxJLUosSU1R8MwrSU2HMB1LSooyk0rBingYWNMSc4pTeaE0N4Oym2uIs4duQVF-YWlqcUl8Vn5pUR5QKt7IwsLExNzE2MTEmDhVAIDXNqg</recordid><startdate>20231028</startdate><enddate>20231028</enddate><creator>Barkan, Oren</creator><creator>Yehonatan Elisha</creator><creator>Asher, Yuval</creator><creator>Eshel, Amit</creator><creator>Koenigstein, Noam</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20231028</creationdate><title>Visual Explanations via Iterated Integrated Attributions</title><author>Barkan, Oren ; Yehonatan Elisha ; Asher, Yuval ; Eshel, Amit ; Koenigstein, Noam</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_28844743443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Iterative methods</topic><toplevel>online_resources</toplevel><creatorcontrib>Barkan, Oren</creatorcontrib><creatorcontrib>Yehonatan Elisha</creatorcontrib><creatorcontrib>Asher, Yuval</creatorcontrib><creatorcontrib>Eshel, Amit</creatorcontrib><creatorcontrib>Koenigstein, Noam</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Barkan, Oren</au><au>Yehonatan Elisha</au><au>Asher, Yuval</au><au>Eshel, Amit</au><au>Koenigstein, Noam</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Visual Explanations via Iterated Integrated Attributions</atitle><jtitle>arXiv.org</jtitle><date>2023-10-28</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>We introduce Iterated Integrated Attributions (IIA) - a generic method for explaining the predictions of vision models. IIA employs iterative integration across the input image, the internal representations generated by the model, and their gradients, yielding precise and focused explanation maps. We demonstrate the effectiveness of IIA through comprehensive evaluations across various tasks, datasets, and network architectures. Our results showcase that IIA produces accurate explanation maps, outperforming other state-of-the-art explanation techniques.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2023-10 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2884474344 |
source | Publicly Available Content Database (Proquest) (PQ_SDU_P3) |
subjects | Iterative methods |
title | Visual Explanations via Iterated Integrated Attributions |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T15%3A55%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Visual%20Explanations%20via%20Iterated%20Integrated%20Attributions&rft.jtitle=arXiv.org&rft.au=Barkan,%20Oren&rft.date=2023-10-28&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2884474344%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_28844743443%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2884474344&rft_id=info:pmid/&rfr_iscdi=true |