Loading…

Meaning Representations from Trajectories in Autoregressive Models

We propose to extract meaning representations from autoregressive language models by considering the distribution of all possible trajectories extending an input text. This strategy is prompt-free, does not require fine-tuning, and is applicable to any pre-trained autoregressive model. Moreover, unl...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2023-11
Main Authors: Tian Yu Liu, Trager, Matthew, Achille, Alessandro, Perera, Pramuditha, Zancato, Luca, Soatto, Stefano
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Tian Yu Liu
Trager, Matthew
Achille, Alessandro
Perera, Pramuditha
Zancato, Luca
Soatto, Stefano
description We propose to extract meaning representations from autoregressive language models by considering the distribution of all possible trajectories extending an input text. This strategy is prompt-free, does not require fine-tuning, and is applicable to any pre-trained autoregressive model. Moreover, unlike vector-based representations, distribution-based representations can also model asymmetric relations (e.g., direction of logical entailment, hypernym/hyponym relations) by using algebraic operations between likelihood functions. These ideas are grounded in distributional perspectives on semantics and are connected to standard constructions in automata theory, but to our knowledge they have not been applied to modern language models. We empirically show that the representations obtained from large models align well with human annotations, outperform other zero-shot and prompt-free methods on semantic similarity tasks, and can be used to solve more complex entailment and containment tasks that standard embeddings cannot handle. Finally, we extend our method to represent data from different modalities (e.g., image and text) using multimodal autoregressive models.
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2884477744</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2884477744</sourcerecordid><originalsourceid>FETCH-proquest_journals_28844777443</originalsourceid><addsrcrecordid>eNqNirEKwjAUAIMgWLT_EHAuxCQ1WVUUly7SvYT6WhJqUvNSv98MfoDTHdytSMGFOFRacr4hJaJjjPGj4nUtCnJuwHjrR_qAOQKCTybZ4JEOMbxoG42DPoVoAan19LRkhzGPaD9Am_CECXdkPZgJofxxS_a3a3u5V3MM7wUwdS4s0efUca2lVEpJKf67vh4vOrA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2884477744</pqid></control><display><type>article</type><title>Meaning Representations from Trajectories in Autoregressive Models</title><source>ProQuest - Publicly Available Content Database</source><creator>Tian Yu Liu ; Trager, Matthew ; Achille, Alessandro ; Perera, Pramuditha ; Zancato, Luca ; Soatto, Stefano</creator><creatorcontrib>Tian Yu Liu ; Trager, Matthew ; Achille, Alessandro ; Perera, Pramuditha ; Zancato, Luca ; Soatto, Stefano</creatorcontrib><description>We propose to extract meaning representations from autoregressive language models by considering the distribution of all possible trajectories extending an input text. This strategy is prompt-free, does not require fine-tuning, and is applicable to any pre-trained autoregressive model. Moreover, unlike vector-based representations, distribution-based representations can also model asymmetric relations (e.g., direction of logical entailment, hypernym/hyponym relations) by using algebraic operations between likelihood functions. These ideas are grounded in distributional perspectives on semantics and are connected to standard constructions in automata theory, but to our knowledge they have not been applied to modern language models. We empirically show that the representations obtained from large models align well with human annotations, outperform other zero-shot and prompt-free methods on semantic similarity tasks, and can be used to solve more complex entailment and containment tasks that standard embeddings cannot handle. Finally, we extend our method to represent data from different modalities (e.g., image and text) using multimodal autoregressive models.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Annotations ; Automata theory ; Autoregressive models ; Graphical representations ; Semantics ; Task complexity</subject><ispartof>arXiv.org, 2023-11</ispartof><rights>2023. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2884477744?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,37012,44590</link.rule.ids></links><search><creatorcontrib>Tian Yu Liu</creatorcontrib><creatorcontrib>Trager, Matthew</creatorcontrib><creatorcontrib>Achille, Alessandro</creatorcontrib><creatorcontrib>Perera, Pramuditha</creatorcontrib><creatorcontrib>Zancato, Luca</creatorcontrib><creatorcontrib>Soatto, Stefano</creatorcontrib><title>Meaning Representations from Trajectories in Autoregressive Models</title><title>arXiv.org</title><description>We propose to extract meaning representations from autoregressive language models by considering the distribution of all possible trajectories extending an input text. This strategy is prompt-free, does not require fine-tuning, and is applicable to any pre-trained autoregressive model. Moreover, unlike vector-based representations, distribution-based representations can also model asymmetric relations (e.g., direction of logical entailment, hypernym/hyponym relations) by using algebraic operations between likelihood functions. These ideas are grounded in distributional perspectives on semantics and are connected to standard constructions in automata theory, but to our knowledge they have not been applied to modern language models. We empirically show that the representations obtained from large models align well with human annotations, outperform other zero-shot and prompt-free methods on semantic similarity tasks, and can be used to solve more complex entailment and containment tasks that standard embeddings cannot handle. Finally, we extend our method to represent data from different modalities (e.g., image and text) using multimodal autoregressive models.</description><subject>Annotations</subject><subject>Automata theory</subject><subject>Autoregressive models</subject><subject>Graphical representations</subject><subject>Semantics</subject><subject>Task complexity</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNirEKwjAUAIMgWLT_EHAuxCQ1WVUUly7SvYT6WhJqUvNSv98MfoDTHdytSMGFOFRacr4hJaJjjPGj4nUtCnJuwHjrR_qAOQKCTybZ4JEOMbxoG42DPoVoAan19LRkhzGPaD9Am_CECXdkPZgJofxxS_a3a3u5V3MM7wUwdS4s0efUca2lVEpJKf67vh4vOrA</recordid><startdate>20231102</startdate><enddate>20231102</enddate><creator>Tian Yu Liu</creator><creator>Trager, Matthew</creator><creator>Achille, Alessandro</creator><creator>Perera, Pramuditha</creator><creator>Zancato, Luca</creator><creator>Soatto, Stefano</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20231102</creationdate><title>Meaning Representations from Trajectories in Autoregressive Models</title><author>Tian Yu Liu ; Trager, Matthew ; Achille, Alessandro ; Perera, Pramuditha ; Zancato, Luca ; Soatto, Stefano</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_28844777443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Annotations</topic><topic>Automata theory</topic><topic>Autoregressive models</topic><topic>Graphical representations</topic><topic>Semantics</topic><topic>Task complexity</topic><toplevel>online_resources</toplevel><creatorcontrib>Tian Yu Liu</creatorcontrib><creatorcontrib>Trager, Matthew</creatorcontrib><creatorcontrib>Achille, Alessandro</creatorcontrib><creatorcontrib>Perera, Pramuditha</creatorcontrib><creatorcontrib>Zancato, Luca</creatorcontrib><creatorcontrib>Soatto, Stefano</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest - Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tian Yu Liu</au><au>Trager, Matthew</au><au>Achille, Alessandro</au><au>Perera, Pramuditha</au><au>Zancato, Luca</au><au>Soatto, Stefano</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Meaning Representations from Trajectories in Autoregressive Models</atitle><jtitle>arXiv.org</jtitle><date>2023-11-02</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>We propose to extract meaning representations from autoregressive language models by considering the distribution of all possible trajectories extending an input text. This strategy is prompt-free, does not require fine-tuning, and is applicable to any pre-trained autoregressive model. Moreover, unlike vector-based representations, distribution-based representations can also model asymmetric relations (e.g., direction of logical entailment, hypernym/hyponym relations) by using algebraic operations between likelihood functions. These ideas are grounded in distributional perspectives on semantics and are connected to standard constructions in automata theory, but to our knowledge they have not been applied to modern language models. We empirically show that the representations obtained from large models align well with human annotations, outperform other zero-shot and prompt-free methods on semantic similarity tasks, and can be used to solve more complex entailment and containment tasks that standard embeddings cannot handle. Finally, we extend our method to represent data from different modalities (e.g., image and text) using multimodal autoregressive models.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2023-11
issn 2331-8422
language eng
recordid cdi_proquest_journals_2884477744
source ProQuest - Publicly Available Content Database
subjects Annotations
Automata theory
Autoregressive models
Graphical representations
Semantics
Task complexity
title Meaning Representations from Trajectories in Autoregressive Models
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T07%3A10%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Meaning%20Representations%20from%20Trajectories%20in%20Autoregressive%20Models&rft.jtitle=arXiv.org&rft.au=Tian%20Yu%20Liu&rft.date=2023-11-02&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2884477744%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_28844777443%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2884477744&rft_id=info:pmid/&rfr_iscdi=true