Loading…

Gravitational anomaly detection using a satellite constellation: analysis and simulation

We investigate the utility of a constellation of four satellites in heliocentric orbit, equipped with accurate means to measure intersatellite ranges, round-trip times and phases of signals coherently retransmitted between members of the constellation. Our goal is to reconstruct the measured trace o...

Full description

Saved in:
Bibliographic Details
Published in:Astrophysics and space science 2023-10, Vol.368 (10), p.92, Article 92
Main Author: Toth, Viktor T.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c2345-7ec615549633376dec811d468884cbf2b55c9677ba220bf6c1c2bfe83aabfa113
cites cdi_FETCH-LOGICAL-c2345-7ec615549633376dec811d468884cbf2b55c9677ba220bf6c1c2bfe83aabfa113
container_end_page
container_issue 10
container_start_page 92
container_title Astrophysics and space science
container_volume 368
creator Toth, Viktor T.
description We investigate the utility of a constellation of four satellites in heliocentric orbit, equipped with accurate means to measure intersatellite ranges, round-trip times and phases of signals coherently retransmitted between members of the constellation. Our goal is to reconstruct the measured trace of the gravitational gradient tensor as accurately as possible. Intersatellite ranges alone are not sufficient for its determination, as they do not account for any rotation of the satellite constellation, which introduces fictitious forces and accelerations. However, measuring signal round-trip time differences along clockwise and counterclockwise signal paths in a Sagnac-type measurement among the satellites supplies the necessary observables to estimate, and subtract, the effects of rotation. Utilizing, in addition, the approximate distance and direction from the Sun, it is possible to approach an accuracy of 10 − 24 s − 2 for a constellation with typical intersatellite distances of 1000 km in an orbit with a 1 astronomical unit semi-major axis. This is deemed sufficient to detect the presence of a galileonic modification of the solar gravitational field.
doi_str_mv 10.1007/s10509-023-04248-5
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2884486015</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2884486015</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2345-7ec615549633376dec811d468884cbf2b55c9677ba220bf6c1c2bfe83aabfa113</originalsourceid><addsrcrecordid>eNp9kEtLxDAUhYMoOI7-AVcB19G8m7qTQUdhwI1CdyFN06FDpx1zW2H-velUcOfqvs53uByEbhm9Z5RmD8CoojmhXBAquTREnaEFUxknudTFOVpQSiXRkhaX6Apgl8Zc59kCFevovpvBDU3fuRa7rt-79oirMAQ_7fAITbfFDoMbQts2Q8C-72DqT8xjQhIADaSmwtDsx_lwjS5q10K4-a1L9Pny_LF6JZv39dvqaUM8F1KRLHjNlJK5FkJkugreMFZJbYyRvqx5qZTPdZaVjnNa1tozz8s6GOFcWTvGxBLdzb6H2H-NAQa768eYfgLLk4c0mjKVVHxW-dgDxFDbQ2z2Lh4to3ZK0M4J2pSgPSVoJ0jMECRxtw3xz_of6gfQvHU3</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2884486015</pqid></control><display><type>article</type><title>Gravitational anomaly detection using a satellite constellation: analysis and simulation</title><source>Springer Nature</source><creator>Toth, Viktor T.</creator><creatorcontrib>Toth, Viktor T.</creatorcontrib><description>We investigate the utility of a constellation of four satellites in heliocentric orbit, equipped with accurate means to measure intersatellite ranges, round-trip times and phases of signals coherently retransmitted between members of the constellation. Our goal is to reconstruct the measured trace of the gravitational gradient tensor as accurately as possible. Intersatellite ranges alone are not sufficient for its determination, as they do not account for any rotation of the satellite constellation, which introduces fictitious forces and accelerations. However, measuring signal round-trip time differences along clockwise and counterclockwise signal paths in a Sagnac-type measurement among the satellites supplies the necessary observables to estimate, and subtract, the effects of rotation. Utilizing, in addition, the approximate distance and direction from the Sun, it is possible to approach an accuracy of 10 − 24 s − 2 for a constellation with typical intersatellite distances of 1000 km in an orbit with a 1 astronomical unit semi-major axis. This is deemed sufficient to detect the presence of a galileonic modification of the solar gravitational field.</description><identifier>ISSN: 0004-640X</identifier><identifier>EISSN: 1572-946X</identifier><identifier>DOI: 10.1007/s10509-023-04248-5</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Anomalies ; Astrobiology ; Astronomy ; Astrophysics ; Astrophysics and Astroparticles ; Celestial bodies ; Cosmology ; Gravitational fields ; Observations and Techniques ; Physics ; Physics and Astronomy ; Rotation ; Satellite constellations ; Satellite observation ; Satellites ; Signal paths ; Solar orbits ; Space Exploration and Astronautics ; Space Sciences (including Extraterrestrial Physics ; Tensors</subject><ispartof>Astrophysics and space science, 2023-10, Vol.368 (10), p.92, Article 92</ispartof><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2345-7ec615549633376dec811d468884cbf2b55c9677ba220bf6c1c2bfe83aabfa113</citedby><cites>FETCH-LOGICAL-c2345-7ec615549633376dec811d468884cbf2b55c9677ba220bf6c1c2bfe83aabfa113</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Toth, Viktor T.</creatorcontrib><title>Gravitational anomaly detection using a satellite constellation: analysis and simulation</title><title>Astrophysics and space science</title><addtitle>Astrophys Space Sci</addtitle><description>We investigate the utility of a constellation of four satellites in heliocentric orbit, equipped with accurate means to measure intersatellite ranges, round-trip times and phases of signals coherently retransmitted between members of the constellation. Our goal is to reconstruct the measured trace of the gravitational gradient tensor as accurately as possible. Intersatellite ranges alone are not sufficient for its determination, as they do not account for any rotation of the satellite constellation, which introduces fictitious forces and accelerations. However, measuring signal round-trip time differences along clockwise and counterclockwise signal paths in a Sagnac-type measurement among the satellites supplies the necessary observables to estimate, and subtract, the effects of rotation. Utilizing, in addition, the approximate distance and direction from the Sun, it is possible to approach an accuracy of 10 − 24 s − 2 for a constellation with typical intersatellite distances of 1000 km in an orbit with a 1 astronomical unit semi-major axis. This is deemed sufficient to detect the presence of a galileonic modification of the solar gravitational field.</description><subject>Anomalies</subject><subject>Astrobiology</subject><subject>Astronomy</subject><subject>Astrophysics</subject><subject>Astrophysics and Astroparticles</subject><subject>Celestial bodies</subject><subject>Cosmology</subject><subject>Gravitational fields</subject><subject>Observations and Techniques</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Rotation</subject><subject>Satellite constellations</subject><subject>Satellite observation</subject><subject>Satellites</subject><subject>Signal paths</subject><subject>Solar orbits</subject><subject>Space Exploration and Astronautics</subject><subject>Space Sciences (including Extraterrestrial Physics</subject><subject>Tensors</subject><issn>0004-640X</issn><issn>1572-946X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLxDAUhYMoOI7-AVcB19G8m7qTQUdhwI1CdyFN06FDpx1zW2H-velUcOfqvs53uByEbhm9Z5RmD8CoojmhXBAquTREnaEFUxknudTFOVpQSiXRkhaX6Apgl8Zc59kCFevovpvBDU3fuRa7rt-79oirMAQ_7fAITbfFDoMbQts2Q8C-72DqT8xjQhIADaSmwtDsx_lwjS5q10K4-a1L9Pny_LF6JZv39dvqaUM8F1KRLHjNlJK5FkJkugreMFZJbYyRvqx5qZTPdZaVjnNa1tozz8s6GOFcWTvGxBLdzb6H2H-NAQa768eYfgLLk4c0mjKVVHxW-dgDxFDbQ2z2Lh4to3ZK0M4J2pSgPSVoJ0jMECRxtw3xz_of6gfQvHU3</recordid><startdate>20231001</startdate><enddate>20231001</enddate><creator>Toth, Viktor T.</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L7M</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope></search><sort><creationdate>20231001</creationdate><title>Gravitational anomaly detection using a satellite constellation: analysis and simulation</title><author>Toth, Viktor T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2345-7ec615549633376dec811d468884cbf2b55c9677ba220bf6c1c2bfe83aabfa113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Anomalies</topic><topic>Astrobiology</topic><topic>Astronomy</topic><topic>Astrophysics</topic><topic>Astrophysics and Astroparticles</topic><topic>Celestial bodies</topic><topic>Cosmology</topic><topic>Gravitational fields</topic><topic>Observations and Techniques</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Rotation</topic><topic>Satellite constellations</topic><topic>Satellite observation</topic><topic>Satellites</topic><topic>Signal paths</topic><topic>Solar orbits</topic><topic>Space Exploration and Astronautics</topic><topic>Space Sciences (including Extraterrestrial Physics</topic><topic>Tensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Toth, Viktor T.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Science Journals</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Astrophysics and space science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Toth, Viktor T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gravitational anomaly detection using a satellite constellation: analysis and simulation</atitle><jtitle>Astrophysics and space science</jtitle><stitle>Astrophys Space Sci</stitle><date>2023-10-01</date><risdate>2023</risdate><volume>368</volume><issue>10</issue><spage>92</spage><pages>92-</pages><artnum>92</artnum><issn>0004-640X</issn><eissn>1572-946X</eissn><abstract>We investigate the utility of a constellation of four satellites in heliocentric orbit, equipped with accurate means to measure intersatellite ranges, round-trip times and phases of signals coherently retransmitted between members of the constellation. Our goal is to reconstruct the measured trace of the gravitational gradient tensor as accurately as possible. Intersatellite ranges alone are not sufficient for its determination, as they do not account for any rotation of the satellite constellation, which introduces fictitious forces and accelerations. However, measuring signal round-trip time differences along clockwise and counterclockwise signal paths in a Sagnac-type measurement among the satellites supplies the necessary observables to estimate, and subtract, the effects of rotation. Utilizing, in addition, the approximate distance and direction from the Sun, it is possible to approach an accuracy of 10 − 24 s − 2 for a constellation with typical intersatellite distances of 1000 km in an orbit with a 1 astronomical unit semi-major axis. This is deemed sufficient to detect the presence of a galileonic modification of the solar gravitational field.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10509-023-04248-5</doi></addata></record>
fulltext fulltext
identifier ISSN: 0004-640X
ispartof Astrophysics and space science, 2023-10, Vol.368 (10), p.92, Article 92
issn 0004-640X
1572-946X
language eng
recordid cdi_proquest_journals_2884486015
source Springer Nature
subjects Anomalies
Astrobiology
Astronomy
Astrophysics
Astrophysics and Astroparticles
Celestial bodies
Cosmology
Gravitational fields
Observations and Techniques
Physics
Physics and Astronomy
Rotation
Satellite constellations
Satellite observation
Satellites
Signal paths
Solar orbits
Space Exploration and Astronautics
Space Sciences (including Extraterrestrial Physics
Tensors
title Gravitational anomaly detection using a satellite constellation: analysis and simulation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T05%3A17%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gravitational%20anomaly%20detection%20using%20a%20satellite%20constellation:%20analysis%20and%20simulation&rft.jtitle=Astrophysics%20and%20space%20science&rft.au=Toth,%20Viktor%20T.&rft.date=2023-10-01&rft.volume=368&rft.issue=10&rft.spage=92&rft.pages=92-&rft.artnum=92&rft.issn=0004-640X&rft.eissn=1572-946X&rft_id=info:doi/10.1007/s10509-023-04248-5&rft_dat=%3Cproquest_cross%3E2884486015%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2345-7ec615549633376dec811d468884cbf2b55c9677ba220bf6c1c2bfe83aabfa113%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2884486015&rft_id=info:pmid/&rfr_iscdi=true