Loading…

The Complexity of L(p, q)-Edge-Labelling

The L ( p ,  q )- Edge-Labelling problem is the edge variant of the well-known L ( p ,  q )- Labelling problem. It is equivalent to the L ( p ,  q )- Labelling problem itself if we restrict the input of the latter problem to line graphs. So far, the complexity of L ( p ,  q )- Edge-Labelling was onl...

Full description

Saved in:
Bibliographic Details
Published in:Algorithmica 2023-11, Vol.85 (11), p.3406-3429
Main Authors: Berthe, Gaétan, Martin, Barnaby, Paulusma, Daniël, Smith, Siani
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c270t-c5631b5ef19f03a61b65907f9ae390fc1770ea5e6d6af861c3faa30c32524c8d3
container_end_page 3429
container_issue 11
container_start_page 3406
container_title Algorithmica
container_volume 85
creator Berthe, Gaétan
Martin, Barnaby
Paulusma, Daniël
Smith, Siani
description The L ( p ,  q )- Edge-Labelling problem is the edge variant of the well-known L ( p ,  q )- Labelling problem. It is equivalent to the L ( p ,  q )- Labelling problem itself if we restrict the input of the latter problem to line graphs. So far, the complexity of L ( p ,  q )- Edge-Labelling was only partially classified in the literature. We complete this study for all p , q ≥ 0 by showing that whenever ( p , q ) ≠ ( 0 , 0 ) , the L ( p ,  q )- Edge-Labelling problem is NP-complete. We do this by proving that for all p , q ≥ 0 except p = q = 0 , there is an integer  k so that L ( p ,  q )-Edge- k -Labelling is NP-complete.
doi_str_mv 10.1007/s00453-023-01120-4
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2884699803</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2884699803</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-c5631b5ef19f03a61b65907f9ae390fc1770ea5e6d6af861c3faa30c32524c8d3</originalsourceid><addsrcrecordid>eNp9kM1KAzEUhYMoWKsv4KrgxoLRe_M7WUqpPzDgpq5Dmia1ZdqZJlOwb-Oz-GSOjuDOxeVszncufIRcItwigL7LAEJyCqw7RAZUHJEBCs4oSIHHZACoCyoU6lNylvMaAJk2akDGs7cwmtSbpgrvq_YwquOovG5uPj92YzpdLAMt3TxU1Wq7PCcn0VU5XPzmkLw-TGeTJ1q-PD5P7kvqmYaWeqk4zmWIaCJwp3CupAEdjQvcQPSoNQQng1ooFwuFnkfnOHjOJBO-WPAhuep3m1Tv9iG3dl3v07Z7aVlRCGVMAbxrsb7lU51zCtE2abVx6WAR7LcS2yuxnRL7o8SKDuI9lLvydhnS3_Q_1BfMNGGm</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2884699803</pqid></control><display><type>article</type><title>The Complexity of L(p, q)-Edge-Labelling</title><source>Springer Nature</source><creator>Berthe, Gaétan ; Martin, Barnaby ; Paulusma, Daniël ; Smith, Siani</creator><creatorcontrib>Berthe, Gaétan ; Martin, Barnaby ; Paulusma, Daniël ; Smith, Siani</creatorcontrib><description>The L ( p ,  q )- Edge-Labelling problem is the edge variant of the well-known L ( p ,  q )- Labelling problem. It is equivalent to the L ( p ,  q )- Labelling problem itself if we restrict the input of the latter problem to line graphs. So far, the complexity of L ( p ,  q )- Edge-Labelling was only partially classified in the literature. We complete this study for all p , q ≥ 0 by showing that whenever ( p , q ) ≠ ( 0 , 0 ) , the L ( p ,  q )- Edge-Labelling problem is NP-complete. We do this by proving that for all p , q ≥ 0 except p = q = 0 , there is an integer  k so that L ( p ,  q )-Edge- k -Labelling is NP-complete.</description><identifier>ISSN: 0178-4617</identifier><identifier>EISSN: 1432-0541</identifier><identifier>DOI: 10.1007/s00453-023-01120-4</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithm Analysis and Problem Complexity ; Algorithms ; Complexity ; Computer Science ; Computer Systems Organization and Communication Networks ; Data Structures and Information Theory ; Labeling ; Mathematics of Computing ; Theory of Computation</subject><ispartof>Algorithmica, 2023-11, Vol.85 (11), p.3406-3429</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-c5631b5ef19f03a61b65907f9ae390fc1770ea5e6d6af861c3faa30c32524c8d3</cites><orcidid>0000-0002-4642-8614</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Berthe, Gaétan</creatorcontrib><creatorcontrib>Martin, Barnaby</creatorcontrib><creatorcontrib>Paulusma, Daniël</creatorcontrib><creatorcontrib>Smith, Siani</creatorcontrib><title>The Complexity of L(p, q)-Edge-Labelling</title><title>Algorithmica</title><addtitle>Algorithmica</addtitle><description>The L ( p ,  q )- Edge-Labelling problem is the edge variant of the well-known L ( p ,  q )- Labelling problem. It is equivalent to the L ( p ,  q )- Labelling problem itself if we restrict the input of the latter problem to line graphs. So far, the complexity of L ( p ,  q )- Edge-Labelling was only partially classified in the literature. We complete this study for all p , q ≥ 0 by showing that whenever ( p , q ) ≠ ( 0 , 0 ) , the L ( p ,  q )- Edge-Labelling problem is NP-complete. We do this by proving that for all p , q ≥ 0 except p = q = 0 , there is an integer  k so that L ( p ,  q )-Edge- k -Labelling is NP-complete.</description><subject>Algorithm Analysis and Problem Complexity</subject><subject>Algorithms</subject><subject>Complexity</subject><subject>Computer Science</subject><subject>Computer Systems Organization and Communication Networks</subject><subject>Data Structures and Information Theory</subject><subject>Labeling</subject><subject>Mathematics of Computing</subject><subject>Theory of Computation</subject><issn>0178-4617</issn><issn>1432-0541</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kM1KAzEUhYMoWKsv4KrgxoLRe_M7WUqpPzDgpq5Dmia1ZdqZJlOwb-Oz-GSOjuDOxeVszncufIRcItwigL7LAEJyCqw7RAZUHJEBCs4oSIHHZACoCyoU6lNylvMaAJk2akDGs7cwmtSbpgrvq_YwquOovG5uPj92YzpdLAMt3TxU1Wq7PCcn0VU5XPzmkLw-TGeTJ1q-PD5P7kvqmYaWeqk4zmWIaCJwp3CupAEdjQvcQPSoNQQng1ooFwuFnkfnOHjOJBO-WPAhuep3m1Tv9iG3dl3v07Z7aVlRCGVMAbxrsb7lU51zCtE2abVx6WAR7LcS2yuxnRL7o8SKDuI9lLvydhnS3_Q_1BfMNGGm</recordid><startdate>20231101</startdate><enddate>20231101</enddate><creator>Berthe, Gaétan</creator><creator>Martin, Barnaby</creator><creator>Paulusma, Daniël</creator><creator>Smith, Siani</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-4642-8614</orcidid></search><sort><creationdate>20231101</creationdate><title>The Complexity of L(p, q)-Edge-Labelling</title><author>Berthe, Gaétan ; Martin, Barnaby ; Paulusma, Daniël ; Smith, Siani</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-c5631b5ef19f03a61b65907f9ae390fc1770ea5e6d6af861c3faa30c32524c8d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithm Analysis and Problem Complexity</topic><topic>Algorithms</topic><topic>Complexity</topic><topic>Computer Science</topic><topic>Computer Systems Organization and Communication Networks</topic><topic>Data Structures and Information Theory</topic><topic>Labeling</topic><topic>Mathematics of Computing</topic><topic>Theory of Computation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Berthe, Gaétan</creatorcontrib><creatorcontrib>Martin, Barnaby</creatorcontrib><creatorcontrib>Paulusma, Daniël</creatorcontrib><creatorcontrib>Smith, Siani</creatorcontrib><collection>CrossRef</collection><jtitle>Algorithmica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Berthe, Gaétan</au><au>Martin, Barnaby</au><au>Paulusma, Daniël</au><au>Smith, Siani</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Complexity of L(p, q)-Edge-Labelling</atitle><jtitle>Algorithmica</jtitle><stitle>Algorithmica</stitle><date>2023-11-01</date><risdate>2023</risdate><volume>85</volume><issue>11</issue><spage>3406</spage><epage>3429</epage><pages>3406-3429</pages><issn>0178-4617</issn><eissn>1432-0541</eissn><abstract>The L ( p ,  q )- Edge-Labelling problem is the edge variant of the well-known L ( p ,  q )- Labelling problem. It is equivalent to the L ( p ,  q )- Labelling problem itself if we restrict the input of the latter problem to line graphs. So far, the complexity of L ( p ,  q )- Edge-Labelling was only partially classified in the literature. We complete this study for all p , q ≥ 0 by showing that whenever ( p , q ) ≠ ( 0 , 0 ) , the L ( p ,  q )- Edge-Labelling problem is NP-complete. We do this by proving that for all p , q ≥ 0 except p = q = 0 , there is an integer  k so that L ( p ,  q )-Edge- k -Labelling is NP-complete.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s00453-023-01120-4</doi><tpages>24</tpages><orcidid>https://orcid.org/0000-0002-4642-8614</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0178-4617
ispartof Algorithmica, 2023-11, Vol.85 (11), p.3406-3429
issn 0178-4617
1432-0541
language eng
recordid cdi_proquest_journals_2884699803
source Springer Nature
subjects Algorithm Analysis and Problem Complexity
Algorithms
Complexity
Computer Science
Computer Systems Organization and Communication Networks
Data Structures and Information Theory
Labeling
Mathematics of Computing
Theory of Computation
title The Complexity of L(p, q)-Edge-Labelling
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T06%3A14%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Complexity%20of%20L(p,%C2%A0q)-Edge-Labelling&rft.jtitle=Algorithmica&rft.au=Berthe,%20Ga%C3%A9tan&rft.date=2023-11-01&rft.volume=85&rft.issue=11&rft.spage=3406&rft.epage=3429&rft.pages=3406-3429&rft.issn=0178-4617&rft.eissn=1432-0541&rft_id=info:doi/10.1007/s00453-023-01120-4&rft_dat=%3Cproquest_cross%3E2884699803%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c270t-c5631b5ef19f03a61b65907f9ae390fc1770ea5e6d6af861c3faa30c32524c8d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2884699803&rft_id=info:pmid/&rfr_iscdi=true