Loading…
MaskFaceGAN: High-Resolution Face Editing With Masked GAN Latent Code Optimization
Face editing represents a popular research topic within the computer vision and image processing communities. While significant progress has been made recently in this area, existing solutions: (i) are still largely focused on low-resolution images, (ii) often generate editing results with visua...
Saved in:
Published in: | IEEE transactions on image processing 2023, Vol.32, p.5893-5908 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c2825-6e9a47c4fd3c7f57a40498310e991ce5b484419a075f80379b2542953349e7a13 |
---|---|
cites | cdi_FETCH-LOGICAL-c2825-6e9a47c4fd3c7f57a40498310e991ce5b484419a075f80379b2542953349e7a13 |
container_end_page | 5908 |
container_issue | |
container_start_page | 5893 |
container_title | IEEE transactions on image processing |
container_volume | 32 |
creator | Pernus, Martin Struc, Vitomir Dobrisek, Simon |
description | Face editing represents a popular research topic within the computer vision and image processing communities. While significant progress has been made recently in this area, existing solutions: (i) are still largely focused on low-resolution images, (ii) often generate editing results with visual artefacts, or (iii) lack fine-grained control over the editing procedure and alter multiple (entangled) attributes simultaneously, when trying to generate the desired facial semantics. In this paper, we aim to address these issues through a novel editing approach, called MaskFaceGAN that focuses on local attribute editing. The proposed approach is based on an optimization procedure that directly optimizes the latent code of a pre-trained (state-of-the-art) Generative Adversarial Network (i.e., StyleGAN2) with respect to several constraints that ensure: (i) preservation of relevant image content, (ii) generation of the targeted facial attributes, and (iii) spatially-selective treatment of local image regions. The constraints are enforced with the help of an (differentiable) attribute classifier and face parser that provide the necessary reference information for the optimization procedure. MaskFaceGAN is evaluated in extensive experiments on the FRGC, SiblingsDB-HQf, and XM2VTS datasets and in comparison with several state-of-the-art techniques from the literature. Our experimental results show that the proposed approach is able to edit face images with respect to several local facial attributes with unprecedented image quality and at high-resolutions ( 1024\times 1024 ), while exhibiting considerably less problems with attribute entanglement than competing solutions. The source code is publicly available from: https://github.com/MartinPernus/MaskFaceGAN . |
doi_str_mv | 10.1109/TIP.2023.3326675 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2884893203</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10299582</ieee_id><sourcerecordid>2883573850</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2825-6e9a47c4fd3c7f57a40498310e991ce5b484419a075f80379b2542953349e7a13</originalsourceid><addsrcrecordid>eNpd0D1PwzAQBmALgWgp7AwMllhYUs5ftc2Gqn5JhaKqiDFy00vr0iYlTgb49SRqB8Tkk_y8p9NLyC2DLmNgHxeTty4HLrpC8F5PqzPSZlayCEDy83oGpSPNpG2RqxC2AEwq1rskLaGNsYZBm8xfXPgcugRHz69PdOzXm2iOId9Vpc8z2nzQwcqXPlvTD19uaMNxRWtNp67ErKT9fIV0dij93v-4JnVNLlK3C3hzejvkfThY9MfRdDaa9J-nUcINV1EPrZM6kelKJDpV2kmQ1ggGaC1LUC2lkZJZB1qlBoS2S64kt0oIaVE7Jjrk4bj3UORfFYYy3vuQ4G7nMsyrEHNjhNLCKKjp_T-6zasiq69rlDRWcBC1gqNKijyEAtP4UPi9K75jBnHTd1z3HTd9x6e-68jdMeIR8Q_n1irDxS_hTHYx</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2884893203</pqid></control><display><type>article</type><title>MaskFaceGAN: High-Resolution Face Editing With Masked GAN Latent Code Optimization</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Pernus, Martin ; Struc, Vitomir ; Dobrisek, Simon</creator><creatorcontrib>Pernus, Martin ; Struc, Vitomir ; Dobrisek, Simon</creatorcontrib><description><![CDATA[Face editing represents a popular research topic within the computer vision and image processing communities. While significant progress has been made recently in this area, existing solutions: <inline-formula> <tex-math notation="LaTeX">(i) </tex-math></inline-formula> are still largely focused on low-resolution images, <inline-formula> <tex-math notation="LaTeX">(ii) </tex-math></inline-formula> often generate editing results with visual artefacts, or <inline-formula> <tex-math notation="LaTeX">(iii) </tex-math></inline-formula> lack fine-grained control over the editing procedure and alter multiple (entangled) attributes simultaneously, when trying to generate the desired facial semantics. In this paper, we aim to address these issues through a novel editing approach, called MaskFaceGAN that focuses on local attribute editing. The proposed approach is based on an optimization procedure that directly optimizes the latent code of a pre-trained (state-of-the-art) Generative Adversarial Network (i.e., StyleGAN2) with respect to several constraints that ensure: <inline-formula> <tex-math notation="LaTeX">(i) </tex-math></inline-formula> preservation of relevant image content, <inline-formula> <tex-math notation="LaTeX">(ii) </tex-math></inline-formula> generation of the targeted facial attributes, and <inline-formula> <tex-math notation="LaTeX">(iii) </tex-math></inline-formula> spatially-selective treatment of local image regions. The constraints are enforced with the help of an (differentiable) attribute classifier and face parser that provide the necessary reference information for the optimization procedure. MaskFaceGAN is evaluated in extensive experiments on the FRGC, SiblingsDB-HQf, and XM2VTS datasets and in comparison with several state-of-the-art techniques from the literature. Our experimental results show that the proposed approach is able to edit face images with respect to several local facial attributes with unprecedented image quality and at high-resolutions (<inline-formula> <tex-math notation="LaTeX">1024\times 1024 </tex-math></inline-formula>), while exhibiting considerably less problems with attribute entanglement than competing solutions. The source code is publicly available from: https://github.com/MartinPernus/MaskFaceGAN .]]></description><identifier>ISSN: 1057-7149</identifier><identifier>EISSN: 1941-0042</identifier><identifier>DOI: 10.1109/TIP.2023.3326675</identifier><identifier>PMID: 37889810</identifier><identifier>CODEN: IIPRE4</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Codes ; Computational modeling ; Computer vision ; Editing ; Entanglement ; Faces ; Facial attribute editing ; Facial features ; GAN inversion ; Generative adversarial networks ; Image processing ; Image quality ; Image resolution ; latent code optimization ; Optimization ; Semantics ; Source code</subject><ispartof>IEEE transactions on image processing, 2023, Vol.32, p.5893-5908</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2825-6e9a47c4fd3c7f57a40498310e991ce5b484419a075f80379b2542953349e7a13</citedby><cites>FETCH-LOGICAL-c2825-6e9a47c4fd3c7f57a40498310e991ce5b484419a075f80379b2542953349e7a13</cites><orcidid>0000-0002-3385-5780 ; 0000-0002-9130-0345 ; 0000-0003-3713-841X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10299582$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,4010,27900,27901,27902,54771</link.rule.ids></links><search><creatorcontrib>Pernus, Martin</creatorcontrib><creatorcontrib>Struc, Vitomir</creatorcontrib><creatorcontrib>Dobrisek, Simon</creatorcontrib><title>MaskFaceGAN: High-Resolution Face Editing With Masked GAN Latent Code Optimization</title><title>IEEE transactions on image processing</title><addtitle>TIP</addtitle><description><![CDATA[Face editing represents a popular research topic within the computer vision and image processing communities. While significant progress has been made recently in this area, existing solutions: <inline-formula> <tex-math notation="LaTeX">(i) </tex-math></inline-formula> are still largely focused on low-resolution images, <inline-formula> <tex-math notation="LaTeX">(ii) </tex-math></inline-formula> often generate editing results with visual artefacts, or <inline-formula> <tex-math notation="LaTeX">(iii) </tex-math></inline-formula> lack fine-grained control over the editing procedure and alter multiple (entangled) attributes simultaneously, when trying to generate the desired facial semantics. In this paper, we aim to address these issues through a novel editing approach, called MaskFaceGAN that focuses on local attribute editing. The proposed approach is based on an optimization procedure that directly optimizes the latent code of a pre-trained (state-of-the-art) Generative Adversarial Network (i.e., StyleGAN2) with respect to several constraints that ensure: <inline-formula> <tex-math notation="LaTeX">(i) </tex-math></inline-formula> preservation of relevant image content, <inline-formula> <tex-math notation="LaTeX">(ii) </tex-math></inline-formula> generation of the targeted facial attributes, and <inline-formula> <tex-math notation="LaTeX">(iii) </tex-math></inline-formula> spatially-selective treatment of local image regions. The constraints are enforced with the help of an (differentiable) attribute classifier and face parser that provide the necessary reference information for the optimization procedure. MaskFaceGAN is evaluated in extensive experiments on the FRGC, SiblingsDB-HQf, and XM2VTS datasets and in comparison with several state-of-the-art techniques from the literature. Our experimental results show that the proposed approach is able to edit face images with respect to several local facial attributes with unprecedented image quality and at high-resolutions (<inline-formula> <tex-math notation="LaTeX">1024\times 1024 </tex-math></inline-formula>), while exhibiting considerably less problems with attribute entanglement than competing solutions. The source code is publicly available from: https://github.com/MartinPernus/MaskFaceGAN .]]></description><subject>Codes</subject><subject>Computational modeling</subject><subject>Computer vision</subject><subject>Editing</subject><subject>Entanglement</subject><subject>Faces</subject><subject>Facial attribute editing</subject><subject>Facial features</subject><subject>GAN inversion</subject><subject>Generative adversarial networks</subject><subject>Image processing</subject><subject>Image quality</subject><subject>Image resolution</subject><subject>latent code optimization</subject><subject>Optimization</subject><subject>Semantics</subject><subject>Source code</subject><issn>1057-7149</issn><issn>1941-0042</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><recordid>eNpd0D1PwzAQBmALgWgp7AwMllhYUs5ftc2Gqn5JhaKqiDFy00vr0iYlTgb49SRqB8Tkk_y8p9NLyC2DLmNgHxeTty4HLrpC8F5PqzPSZlayCEDy83oGpSPNpG2RqxC2AEwq1rskLaGNsYZBm8xfXPgcugRHz69PdOzXm2iOId9Vpc8z2nzQwcqXPlvTD19uaMNxRWtNp67ErKT9fIV0dij93v-4JnVNLlK3C3hzejvkfThY9MfRdDaa9J-nUcINV1EPrZM6kelKJDpV2kmQ1ggGaC1LUC2lkZJZB1qlBoS2S64kt0oIaVE7Jjrk4bj3UORfFYYy3vuQ4G7nMsyrEHNjhNLCKKjp_T-6zasiq69rlDRWcBC1gqNKijyEAtP4UPi9K75jBnHTd1z3HTd9x6e-68jdMeIR8Q_n1irDxS_hTHYx</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>Pernus, Martin</creator><creator>Struc, Vitomir</creator><creator>Dobrisek, Simon</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-3385-5780</orcidid><orcidid>https://orcid.org/0000-0002-9130-0345</orcidid><orcidid>https://orcid.org/0000-0003-3713-841X</orcidid></search><sort><creationdate>2023</creationdate><title>MaskFaceGAN: High-Resolution Face Editing With Masked GAN Latent Code Optimization</title><author>Pernus, Martin ; Struc, Vitomir ; Dobrisek, Simon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2825-6e9a47c4fd3c7f57a40498310e991ce5b484419a075f80379b2542953349e7a13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Codes</topic><topic>Computational modeling</topic><topic>Computer vision</topic><topic>Editing</topic><topic>Entanglement</topic><topic>Faces</topic><topic>Facial attribute editing</topic><topic>Facial features</topic><topic>GAN inversion</topic><topic>Generative adversarial networks</topic><topic>Image processing</topic><topic>Image quality</topic><topic>Image resolution</topic><topic>latent code optimization</topic><topic>Optimization</topic><topic>Semantics</topic><topic>Source code</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pernus, Martin</creatorcontrib><creatorcontrib>Struc, Vitomir</creatorcontrib><creatorcontrib>Dobrisek, Simon</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Electronic Library Online</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on image processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pernus, Martin</au><au>Struc, Vitomir</au><au>Dobrisek, Simon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MaskFaceGAN: High-Resolution Face Editing With Masked GAN Latent Code Optimization</atitle><jtitle>IEEE transactions on image processing</jtitle><stitle>TIP</stitle><date>2023</date><risdate>2023</risdate><volume>32</volume><spage>5893</spage><epage>5908</epage><pages>5893-5908</pages><issn>1057-7149</issn><eissn>1941-0042</eissn><coden>IIPRE4</coden><abstract><![CDATA[Face editing represents a popular research topic within the computer vision and image processing communities. While significant progress has been made recently in this area, existing solutions: <inline-formula> <tex-math notation="LaTeX">(i) </tex-math></inline-formula> are still largely focused on low-resolution images, <inline-formula> <tex-math notation="LaTeX">(ii) </tex-math></inline-formula> often generate editing results with visual artefacts, or <inline-formula> <tex-math notation="LaTeX">(iii) </tex-math></inline-formula> lack fine-grained control over the editing procedure and alter multiple (entangled) attributes simultaneously, when trying to generate the desired facial semantics. In this paper, we aim to address these issues through a novel editing approach, called MaskFaceGAN that focuses on local attribute editing. The proposed approach is based on an optimization procedure that directly optimizes the latent code of a pre-trained (state-of-the-art) Generative Adversarial Network (i.e., StyleGAN2) with respect to several constraints that ensure: <inline-formula> <tex-math notation="LaTeX">(i) </tex-math></inline-formula> preservation of relevant image content, <inline-formula> <tex-math notation="LaTeX">(ii) </tex-math></inline-formula> generation of the targeted facial attributes, and <inline-formula> <tex-math notation="LaTeX">(iii) </tex-math></inline-formula> spatially-selective treatment of local image regions. The constraints are enforced with the help of an (differentiable) attribute classifier and face parser that provide the necessary reference information for the optimization procedure. MaskFaceGAN is evaluated in extensive experiments on the FRGC, SiblingsDB-HQf, and XM2VTS datasets and in comparison with several state-of-the-art techniques from the literature. Our experimental results show that the proposed approach is able to edit face images with respect to several local facial attributes with unprecedented image quality and at high-resolutions (<inline-formula> <tex-math notation="LaTeX">1024\times 1024 </tex-math></inline-formula>), while exhibiting considerably less problems with attribute entanglement than competing solutions. The source code is publicly available from: https://github.com/MartinPernus/MaskFaceGAN .]]></abstract><cop>New York</cop><pub>IEEE</pub><pmid>37889810</pmid><doi>10.1109/TIP.2023.3326675</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-3385-5780</orcidid><orcidid>https://orcid.org/0000-0002-9130-0345</orcidid><orcidid>https://orcid.org/0000-0003-3713-841X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1057-7149 |
ispartof | IEEE transactions on image processing, 2023, Vol.32, p.5893-5908 |
issn | 1057-7149 1941-0042 |
language | eng |
recordid | cdi_proquest_journals_2884893203 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Codes Computational modeling Computer vision Editing Entanglement Faces Facial attribute editing Facial features GAN inversion Generative adversarial networks Image processing Image quality Image resolution latent code optimization Optimization Semantics Source code |
title | MaskFaceGAN: High-Resolution Face Editing With Masked GAN Latent Code Optimization |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T19%3A49%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MaskFaceGAN:%20High-Resolution%20Face%20Editing%20With%20Masked%20GAN%20Latent%20Code%20Optimization&rft.jtitle=IEEE%20transactions%20on%20image%20processing&rft.au=Pernus,%20Martin&rft.date=2023&rft.volume=32&rft.spage=5893&rft.epage=5908&rft.pages=5893-5908&rft.issn=1057-7149&rft.eissn=1941-0042&rft.coden=IIPRE4&rft_id=info:doi/10.1109/TIP.2023.3326675&rft_dat=%3Cproquest_cross%3E2883573850%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2825-6e9a47c4fd3c7f57a40498310e991ce5b484419a075f80379b2542953349e7a13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2884893203&rft_id=info:pmid/37889810&rft_ieee_id=10299582&rfr_iscdi=true |