Loading…

MaskFaceGAN: High-Resolution Face Editing With Masked GAN Latent Code Optimization

Face editing represents a popular research topic within the computer vision and image processing communities. While significant progress has been made recently in this area, existing solutions: (i) are still largely focused on low-resolution images, (ii) often generate editing results with visua...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on image processing 2023, Vol.32, p.5893-5908
Main Authors: Pernus, Martin, Struc, Vitomir, Dobrisek, Simon
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c2825-6e9a47c4fd3c7f57a40498310e991ce5b484419a075f80379b2542953349e7a13
cites cdi_FETCH-LOGICAL-c2825-6e9a47c4fd3c7f57a40498310e991ce5b484419a075f80379b2542953349e7a13
container_end_page 5908
container_issue
container_start_page 5893
container_title IEEE transactions on image processing
container_volume 32
creator Pernus, Martin
Struc, Vitomir
Dobrisek, Simon
description Face editing represents a popular research topic within the computer vision and image processing communities. While significant progress has been made recently in this area, existing solutions: (i) are still largely focused on low-resolution images, (ii) often generate editing results with visual artefacts, or (iii) lack fine-grained control over the editing procedure and alter multiple (entangled) attributes simultaneously, when trying to generate the desired facial semantics. In this paper, we aim to address these issues through a novel editing approach, called MaskFaceGAN that focuses on local attribute editing. The proposed approach is based on an optimization procedure that directly optimizes the latent code of a pre-trained (state-of-the-art) Generative Adversarial Network (i.e., StyleGAN2) with respect to several constraints that ensure: (i) preservation of relevant image content, (ii) generation of the targeted facial attributes, and (iii) spatially-selective treatment of local image regions. The constraints are enforced with the help of an (differentiable) attribute classifier and face parser that provide the necessary reference information for the optimization procedure. MaskFaceGAN is evaluated in extensive experiments on the FRGC, SiblingsDB-HQf, and XM2VTS datasets and in comparison with several state-of-the-art techniques from the literature. Our experimental results show that the proposed approach is able to edit face images with respect to several local facial attributes with unprecedented image quality and at high-resolutions ( 1024\times 1024 ), while exhibiting considerably less problems with attribute entanglement than competing solutions. The source code is publicly available from: https://github.com/MartinPernus/MaskFaceGAN .
doi_str_mv 10.1109/TIP.2023.3326675
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2884893203</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10299582</ieee_id><sourcerecordid>2883573850</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2825-6e9a47c4fd3c7f57a40498310e991ce5b484419a075f80379b2542953349e7a13</originalsourceid><addsrcrecordid>eNpd0D1PwzAQBmALgWgp7AwMllhYUs5ftc2Gqn5JhaKqiDFy00vr0iYlTgb49SRqB8Tkk_y8p9NLyC2DLmNgHxeTty4HLrpC8F5PqzPSZlayCEDy83oGpSPNpG2RqxC2AEwq1rskLaGNsYZBm8xfXPgcugRHz69PdOzXm2iOId9Vpc8z2nzQwcqXPlvTD19uaMNxRWtNp67ErKT9fIV0dij93v-4JnVNLlK3C3hzejvkfThY9MfRdDaa9J-nUcINV1EPrZM6kelKJDpV2kmQ1ggGaC1LUC2lkZJZB1qlBoS2S64kt0oIaVE7Jjrk4bj3UORfFYYy3vuQ4G7nMsyrEHNjhNLCKKjp_T-6zasiq69rlDRWcBC1gqNKijyEAtP4UPi9K75jBnHTd1z3HTd9x6e-68jdMeIR8Q_n1irDxS_hTHYx</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2884893203</pqid></control><display><type>article</type><title>MaskFaceGAN: High-Resolution Face Editing With Masked GAN Latent Code Optimization</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Pernus, Martin ; Struc, Vitomir ; Dobrisek, Simon</creator><creatorcontrib>Pernus, Martin ; Struc, Vitomir ; Dobrisek, Simon</creatorcontrib><description><![CDATA[Face editing represents a popular research topic within the computer vision and image processing communities. While significant progress has been made recently in this area, existing solutions: <inline-formula> <tex-math notation="LaTeX">(i) </tex-math></inline-formula> are still largely focused on low-resolution images, <inline-formula> <tex-math notation="LaTeX">(ii) </tex-math></inline-formula> often generate editing results with visual artefacts, or <inline-formula> <tex-math notation="LaTeX">(iii) </tex-math></inline-formula> lack fine-grained control over the editing procedure and alter multiple (entangled) attributes simultaneously, when trying to generate the desired facial semantics. In this paper, we aim to address these issues through a novel editing approach, called MaskFaceGAN that focuses on local attribute editing. The proposed approach is based on an optimization procedure that directly optimizes the latent code of a pre-trained (state-of-the-art) Generative Adversarial Network (i.e., StyleGAN2) with respect to several constraints that ensure: <inline-formula> <tex-math notation="LaTeX">(i) </tex-math></inline-formula> preservation of relevant image content, <inline-formula> <tex-math notation="LaTeX">(ii) </tex-math></inline-formula> generation of the targeted facial attributes, and <inline-formula> <tex-math notation="LaTeX">(iii) </tex-math></inline-formula> spatially-selective treatment of local image regions. The constraints are enforced with the help of an (differentiable) attribute classifier and face parser that provide the necessary reference information for the optimization procedure. MaskFaceGAN is evaluated in extensive experiments on the FRGC, SiblingsDB-HQf, and XM2VTS datasets and in comparison with several state-of-the-art techniques from the literature. Our experimental results show that the proposed approach is able to edit face images with respect to several local facial attributes with unprecedented image quality and at high-resolutions (<inline-formula> <tex-math notation="LaTeX">1024\times 1024 </tex-math></inline-formula>), while exhibiting considerably less problems with attribute entanglement than competing solutions. The source code is publicly available from: https://github.com/MartinPernus/MaskFaceGAN .]]></description><identifier>ISSN: 1057-7149</identifier><identifier>EISSN: 1941-0042</identifier><identifier>DOI: 10.1109/TIP.2023.3326675</identifier><identifier>PMID: 37889810</identifier><identifier>CODEN: IIPRE4</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Codes ; Computational modeling ; Computer vision ; Editing ; Entanglement ; Faces ; Facial attribute editing ; Facial features ; GAN inversion ; Generative adversarial networks ; Image processing ; Image quality ; Image resolution ; latent code optimization ; Optimization ; Semantics ; Source code</subject><ispartof>IEEE transactions on image processing, 2023, Vol.32, p.5893-5908</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2825-6e9a47c4fd3c7f57a40498310e991ce5b484419a075f80379b2542953349e7a13</citedby><cites>FETCH-LOGICAL-c2825-6e9a47c4fd3c7f57a40498310e991ce5b484419a075f80379b2542953349e7a13</cites><orcidid>0000-0002-3385-5780 ; 0000-0002-9130-0345 ; 0000-0003-3713-841X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10299582$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,4010,27900,27901,27902,54771</link.rule.ids></links><search><creatorcontrib>Pernus, Martin</creatorcontrib><creatorcontrib>Struc, Vitomir</creatorcontrib><creatorcontrib>Dobrisek, Simon</creatorcontrib><title>MaskFaceGAN: High-Resolution Face Editing With Masked GAN Latent Code Optimization</title><title>IEEE transactions on image processing</title><addtitle>TIP</addtitle><description><![CDATA[Face editing represents a popular research topic within the computer vision and image processing communities. While significant progress has been made recently in this area, existing solutions: <inline-formula> <tex-math notation="LaTeX">(i) </tex-math></inline-formula> are still largely focused on low-resolution images, <inline-formula> <tex-math notation="LaTeX">(ii) </tex-math></inline-formula> often generate editing results with visual artefacts, or <inline-formula> <tex-math notation="LaTeX">(iii) </tex-math></inline-formula> lack fine-grained control over the editing procedure and alter multiple (entangled) attributes simultaneously, when trying to generate the desired facial semantics. In this paper, we aim to address these issues through a novel editing approach, called MaskFaceGAN that focuses on local attribute editing. The proposed approach is based on an optimization procedure that directly optimizes the latent code of a pre-trained (state-of-the-art) Generative Adversarial Network (i.e., StyleGAN2) with respect to several constraints that ensure: <inline-formula> <tex-math notation="LaTeX">(i) </tex-math></inline-formula> preservation of relevant image content, <inline-formula> <tex-math notation="LaTeX">(ii) </tex-math></inline-formula> generation of the targeted facial attributes, and <inline-formula> <tex-math notation="LaTeX">(iii) </tex-math></inline-formula> spatially-selective treatment of local image regions. The constraints are enforced with the help of an (differentiable) attribute classifier and face parser that provide the necessary reference information for the optimization procedure. MaskFaceGAN is evaluated in extensive experiments on the FRGC, SiblingsDB-HQf, and XM2VTS datasets and in comparison with several state-of-the-art techniques from the literature. Our experimental results show that the proposed approach is able to edit face images with respect to several local facial attributes with unprecedented image quality and at high-resolutions (<inline-formula> <tex-math notation="LaTeX">1024\times 1024 </tex-math></inline-formula>), while exhibiting considerably less problems with attribute entanglement than competing solutions. The source code is publicly available from: https://github.com/MartinPernus/MaskFaceGAN .]]></description><subject>Codes</subject><subject>Computational modeling</subject><subject>Computer vision</subject><subject>Editing</subject><subject>Entanglement</subject><subject>Faces</subject><subject>Facial attribute editing</subject><subject>Facial features</subject><subject>GAN inversion</subject><subject>Generative adversarial networks</subject><subject>Image processing</subject><subject>Image quality</subject><subject>Image resolution</subject><subject>latent code optimization</subject><subject>Optimization</subject><subject>Semantics</subject><subject>Source code</subject><issn>1057-7149</issn><issn>1941-0042</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><recordid>eNpd0D1PwzAQBmALgWgp7AwMllhYUs5ftc2Gqn5JhaKqiDFy00vr0iYlTgb49SRqB8Tkk_y8p9NLyC2DLmNgHxeTty4HLrpC8F5PqzPSZlayCEDy83oGpSPNpG2RqxC2AEwq1rskLaGNsYZBm8xfXPgcugRHz69PdOzXm2iOId9Vpc8z2nzQwcqXPlvTD19uaMNxRWtNp67ErKT9fIV0dij93v-4JnVNLlK3C3hzejvkfThY9MfRdDaa9J-nUcINV1EPrZM6kelKJDpV2kmQ1ggGaC1LUC2lkZJZB1qlBoS2S64kt0oIaVE7Jjrk4bj3UORfFYYy3vuQ4G7nMsyrEHNjhNLCKKjp_T-6zasiq69rlDRWcBC1gqNKijyEAtP4UPi9K75jBnHTd1z3HTd9x6e-68jdMeIR8Q_n1irDxS_hTHYx</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>Pernus, Martin</creator><creator>Struc, Vitomir</creator><creator>Dobrisek, Simon</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-3385-5780</orcidid><orcidid>https://orcid.org/0000-0002-9130-0345</orcidid><orcidid>https://orcid.org/0000-0003-3713-841X</orcidid></search><sort><creationdate>2023</creationdate><title>MaskFaceGAN: High-Resolution Face Editing With Masked GAN Latent Code Optimization</title><author>Pernus, Martin ; Struc, Vitomir ; Dobrisek, Simon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2825-6e9a47c4fd3c7f57a40498310e991ce5b484419a075f80379b2542953349e7a13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Codes</topic><topic>Computational modeling</topic><topic>Computer vision</topic><topic>Editing</topic><topic>Entanglement</topic><topic>Faces</topic><topic>Facial attribute editing</topic><topic>Facial features</topic><topic>GAN inversion</topic><topic>Generative adversarial networks</topic><topic>Image processing</topic><topic>Image quality</topic><topic>Image resolution</topic><topic>latent code optimization</topic><topic>Optimization</topic><topic>Semantics</topic><topic>Source code</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pernus, Martin</creatorcontrib><creatorcontrib>Struc, Vitomir</creatorcontrib><creatorcontrib>Dobrisek, Simon</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Electronic Library Online</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on image processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pernus, Martin</au><au>Struc, Vitomir</au><au>Dobrisek, Simon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MaskFaceGAN: High-Resolution Face Editing With Masked GAN Latent Code Optimization</atitle><jtitle>IEEE transactions on image processing</jtitle><stitle>TIP</stitle><date>2023</date><risdate>2023</risdate><volume>32</volume><spage>5893</spage><epage>5908</epage><pages>5893-5908</pages><issn>1057-7149</issn><eissn>1941-0042</eissn><coden>IIPRE4</coden><abstract><![CDATA[Face editing represents a popular research topic within the computer vision and image processing communities. While significant progress has been made recently in this area, existing solutions: <inline-formula> <tex-math notation="LaTeX">(i) </tex-math></inline-formula> are still largely focused on low-resolution images, <inline-formula> <tex-math notation="LaTeX">(ii) </tex-math></inline-formula> often generate editing results with visual artefacts, or <inline-formula> <tex-math notation="LaTeX">(iii) </tex-math></inline-formula> lack fine-grained control over the editing procedure and alter multiple (entangled) attributes simultaneously, when trying to generate the desired facial semantics. In this paper, we aim to address these issues through a novel editing approach, called MaskFaceGAN that focuses on local attribute editing. The proposed approach is based on an optimization procedure that directly optimizes the latent code of a pre-trained (state-of-the-art) Generative Adversarial Network (i.e., StyleGAN2) with respect to several constraints that ensure: <inline-formula> <tex-math notation="LaTeX">(i) </tex-math></inline-formula> preservation of relevant image content, <inline-formula> <tex-math notation="LaTeX">(ii) </tex-math></inline-formula> generation of the targeted facial attributes, and <inline-formula> <tex-math notation="LaTeX">(iii) </tex-math></inline-formula> spatially-selective treatment of local image regions. The constraints are enforced with the help of an (differentiable) attribute classifier and face parser that provide the necessary reference information for the optimization procedure. MaskFaceGAN is evaluated in extensive experiments on the FRGC, SiblingsDB-HQf, and XM2VTS datasets and in comparison with several state-of-the-art techniques from the literature. Our experimental results show that the proposed approach is able to edit face images with respect to several local facial attributes with unprecedented image quality and at high-resolutions (<inline-formula> <tex-math notation="LaTeX">1024\times 1024 </tex-math></inline-formula>), while exhibiting considerably less problems with attribute entanglement than competing solutions. The source code is publicly available from: https://github.com/MartinPernus/MaskFaceGAN .]]></abstract><cop>New York</cop><pub>IEEE</pub><pmid>37889810</pmid><doi>10.1109/TIP.2023.3326675</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-3385-5780</orcidid><orcidid>https://orcid.org/0000-0002-9130-0345</orcidid><orcidid>https://orcid.org/0000-0003-3713-841X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1057-7149
ispartof IEEE transactions on image processing, 2023, Vol.32, p.5893-5908
issn 1057-7149
1941-0042
language eng
recordid cdi_proquest_journals_2884893203
source IEEE Electronic Library (IEL) Journals
subjects Codes
Computational modeling
Computer vision
Editing
Entanglement
Faces
Facial attribute editing
Facial features
GAN inversion
Generative adversarial networks
Image processing
Image quality
Image resolution
latent code optimization
Optimization
Semantics
Source code
title MaskFaceGAN: High-Resolution Face Editing With Masked GAN Latent Code Optimization
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T19%3A49%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MaskFaceGAN:%20High-Resolution%20Face%20Editing%20With%20Masked%20GAN%20Latent%20Code%20Optimization&rft.jtitle=IEEE%20transactions%20on%20image%20processing&rft.au=Pernus,%20Martin&rft.date=2023&rft.volume=32&rft.spage=5893&rft.epage=5908&rft.pages=5893-5908&rft.issn=1057-7149&rft.eissn=1941-0042&rft.coden=IIPRE4&rft_id=info:doi/10.1109/TIP.2023.3326675&rft_dat=%3Cproquest_cross%3E2883573850%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2825-6e9a47c4fd3c7f57a40498310e991ce5b484419a075f80379b2542953349e7a13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2884893203&rft_id=info:pmid/37889810&rft_ieee_id=10299582&rfr_iscdi=true