Loading…

Bidirectional Double-Spring Pneumatic Artificial Muscle With Inductive Self-Sensing

This study proposes a bidirectional double-spring pneumatic artificial muscle (PAM) with inductive self-sensing for wearable robotic devices. The actuator structure, composed of commercially available latex and springs, enables a low-cost and consistent manufacturing process. Springs, which serve as...

Full description

Saved in:
Bibliographic Details
Published in:IEEE robotics and automation letters 2023-12, Vol.8 (12), p.8160-8167
Main Authors: Cho, Yeonha, Kim, Woojong, Park, Hyunkyu, Kim, Jung, Na, Youngjin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c292t-2cd98c75a401cc43aadecfbb5994ea223eaf0c14847f834fe3d24c5d97c188443
cites cdi_FETCH-LOGICAL-c292t-2cd98c75a401cc43aadecfbb5994ea223eaf0c14847f834fe3d24c5d97c188443
container_end_page 8167
container_issue 12
container_start_page 8160
container_title IEEE robotics and automation letters
container_volume 8
creator Cho, Yeonha
Kim, Woojong
Park, Hyunkyu
Kim, Jung
Na, Youngjin
description This study proposes a bidirectional double-spring pneumatic artificial muscle (PAM) with inductive self-sensing for wearable robotic devices. The actuator structure, composed of commercially available latex and springs, enables a low-cost and consistent manufacturing process. Springs, which serve as the skeleton of the actuator, were used to increase the stability and stiffness of the structure, as well as to embed a self-sensing ability using the inductance of the spring. The actuator design parameters were selected through simulations to prevent buckling while achieving a notable actuation performance. The bidirectional force characteristics of the actuator were evaluated through quasi-static experiments, and the inductance-based length-sensing performance was validated during both contraction and elongation. The need for self-sensing in bidirectional actuation was emphasized through closed-loop length control. The proposed actuator can potentially enable the development of lightweight and efficient wearable robotic devices with improved sensing and actuation capabilities.
doi_str_mv 10.1109/LRA.2023.3326660
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_2884893461</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10290951</ieee_id><sourcerecordid>2884893461</sourcerecordid><originalsourceid>FETCH-LOGICAL-c292t-2cd98c75a401cc43aadecfbb5994ea223eaf0c14847f834fe3d24c5d97c188443</originalsourceid><addsrcrecordid>eNpNkDtPwzAQgC0EElXpzsAQiTnFrzw8lvKqVAQiIEbLvZzBVZoUO0Hi3-OqHTrdDd930n2EXDI6ZYyqm-XbbMopF1MheJ7n9ISMuCiKVBR5fnq0n5NJCGtKKct4IVQ2ItWtq51H6F3Xmia564ZVg2m19a79Sl5bHDamd5DMfO-sAxeR5yFAg8mn67-TRVsPUf3FpMLGphW2IXoX5MyaJuDkMMfk4-H-ff6ULl8eF_PZMgWueJ9yqFUJRWYkZQBSGFMj2NUqU0qi4VygsRSYLGVhSyEtippLyGpVACtLKcWYXO_vbn33M2Do9bobfHwjaB6BUgmZs0jRPQW-C8Gj1fG5jfF_mlG9q6djPb2rpw_1onK1VxwiHuFcUZUx8Q-GkGtP</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2884893461</pqid></control><display><type>article</type><title>Bidirectional Double-Spring Pneumatic Artificial Muscle With Inductive Self-Sensing</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Cho, Yeonha ; Kim, Woojong ; Park, Hyunkyu ; Kim, Jung ; Na, Youngjin</creator><creatorcontrib>Cho, Yeonha ; Kim, Woojong ; Park, Hyunkyu ; Kim, Jung ; Na, Youngjin</creatorcontrib><description>This study proposes a bidirectional double-spring pneumatic artificial muscle (PAM) with inductive self-sensing for wearable robotic devices. The actuator structure, composed of commercially available latex and springs, enables a low-cost and consistent manufacturing process. Springs, which serve as the skeleton of the actuator, were used to increase the stability and stiffness of the structure, as well as to embed a self-sensing ability using the inductance of the spring. The actuator design parameters were selected through simulations to prevent buckling while achieving a notable actuation performance. The bidirectional force characteristics of the actuator were evaluated through quasi-static experiments, and the inductance-based length-sensing performance was validated during both contraction and elongation. The need for self-sensing in bidirectional actuation was emphasized through closed-loop length control. The proposed actuator can potentially enable the development of lightweight and efficient wearable robotic devices with improved sensing and actuation capabilities.</description><identifier>ISSN: 2377-3766</identifier><identifier>EISSN: 2377-3766</identifier><identifier>DOI: 10.1109/LRA.2023.3326660</identifier><identifier>CODEN: IRALC6</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Actuation ; Actuator design ; Actuators ; Artificial muscles ; Closed loops ; Control ; Design parameters ; Elongation ; Force ; Inductance ; Latex ; learning for soft robots ; modeling ; Robot sensing systems ; soft robot materials and design ; Soft robotics ; Soft sensors ; soft sensors and actuators ; Springs ; Wearable robots ; Wearable technology</subject><ispartof>IEEE robotics and automation letters, 2023-12, Vol.8 (12), p.8160-8167</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c292t-2cd98c75a401cc43aadecfbb5994ea223eaf0c14847f834fe3d24c5d97c188443</citedby><cites>FETCH-LOGICAL-c292t-2cd98c75a401cc43aadecfbb5994ea223eaf0c14847f834fe3d24c5d97c188443</cites><orcidid>0000-0002-2012-4444 ; 0000-0002-1825-6325 ; 0000-0002-0393-8622 ; 0000-0001-5121-2917 ; 0009-0009-6095-0896</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10290951$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Cho, Yeonha</creatorcontrib><creatorcontrib>Kim, Woojong</creatorcontrib><creatorcontrib>Park, Hyunkyu</creatorcontrib><creatorcontrib>Kim, Jung</creatorcontrib><creatorcontrib>Na, Youngjin</creatorcontrib><title>Bidirectional Double-Spring Pneumatic Artificial Muscle With Inductive Self-Sensing</title><title>IEEE robotics and automation letters</title><addtitle>LRA</addtitle><description>This study proposes a bidirectional double-spring pneumatic artificial muscle (PAM) with inductive self-sensing for wearable robotic devices. The actuator structure, composed of commercially available latex and springs, enables a low-cost and consistent manufacturing process. Springs, which serve as the skeleton of the actuator, were used to increase the stability and stiffness of the structure, as well as to embed a self-sensing ability using the inductance of the spring. The actuator design parameters were selected through simulations to prevent buckling while achieving a notable actuation performance. The bidirectional force characteristics of the actuator were evaluated through quasi-static experiments, and the inductance-based length-sensing performance was validated during both contraction and elongation. The need for self-sensing in bidirectional actuation was emphasized through closed-loop length control. The proposed actuator can potentially enable the development of lightweight and efficient wearable robotic devices with improved sensing and actuation capabilities.</description><subject>Actuation</subject><subject>Actuator design</subject><subject>Actuators</subject><subject>Artificial muscles</subject><subject>Closed loops</subject><subject>Control</subject><subject>Design parameters</subject><subject>Elongation</subject><subject>Force</subject><subject>Inductance</subject><subject>Latex</subject><subject>learning for soft robots</subject><subject>modeling</subject><subject>Robot sensing systems</subject><subject>soft robot materials and design</subject><subject>Soft robotics</subject><subject>Soft sensors</subject><subject>soft sensors and actuators</subject><subject>Springs</subject><subject>Wearable robots</subject><subject>Wearable technology</subject><issn>2377-3766</issn><issn>2377-3766</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpNkDtPwzAQgC0EElXpzsAQiTnFrzw8lvKqVAQiIEbLvZzBVZoUO0Hi3-OqHTrdDd930n2EXDI6ZYyqm-XbbMopF1MheJ7n9ISMuCiKVBR5fnq0n5NJCGtKKct4IVQ2ItWtq51H6F3Xmia564ZVg2m19a79Sl5bHDamd5DMfO-sAxeR5yFAg8mn67-TRVsPUf3FpMLGphW2IXoX5MyaJuDkMMfk4-H-ff6ULl8eF_PZMgWueJ9yqFUJRWYkZQBSGFMj2NUqU0qi4VygsRSYLGVhSyEtippLyGpVACtLKcWYXO_vbn33M2Do9bobfHwjaB6BUgmZs0jRPQW-C8Gj1fG5jfF_mlG9q6djPb2rpw_1onK1VxwiHuFcUZUx8Q-GkGtP</recordid><startdate>20231201</startdate><enddate>20231201</enddate><creator>Cho, Yeonha</creator><creator>Kim, Woojong</creator><creator>Park, Hyunkyu</creator><creator>Kim, Jung</creator><creator>Na, Youngjin</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-2012-4444</orcidid><orcidid>https://orcid.org/0000-0002-1825-6325</orcidid><orcidid>https://orcid.org/0000-0002-0393-8622</orcidid><orcidid>https://orcid.org/0000-0001-5121-2917</orcidid><orcidid>https://orcid.org/0009-0009-6095-0896</orcidid></search><sort><creationdate>20231201</creationdate><title>Bidirectional Double-Spring Pneumatic Artificial Muscle With Inductive Self-Sensing</title><author>Cho, Yeonha ; Kim, Woojong ; Park, Hyunkyu ; Kim, Jung ; Na, Youngjin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c292t-2cd98c75a401cc43aadecfbb5994ea223eaf0c14847f834fe3d24c5d97c188443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Actuation</topic><topic>Actuator design</topic><topic>Actuators</topic><topic>Artificial muscles</topic><topic>Closed loops</topic><topic>Control</topic><topic>Design parameters</topic><topic>Elongation</topic><topic>Force</topic><topic>Inductance</topic><topic>Latex</topic><topic>learning for soft robots</topic><topic>modeling</topic><topic>Robot sensing systems</topic><topic>soft robot materials and design</topic><topic>Soft robotics</topic><topic>Soft sensors</topic><topic>soft sensors and actuators</topic><topic>Springs</topic><topic>Wearable robots</topic><topic>Wearable technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cho, Yeonha</creatorcontrib><creatorcontrib>Kim, Woojong</creatorcontrib><creatorcontrib>Park, Hyunkyu</creatorcontrib><creatorcontrib>Kim, Jung</creatorcontrib><creatorcontrib>Na, Youngjin</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE robotics and automation letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cho, Yeonha</au><au>Kim, Woojong</au><au>Park, Hyunkyu</au><au>Kim, Jung</au><au>Na, Youngjin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bidirectional Double-Spring Pneumatic Artificial Muscle With Inductive Self-Sensing</atitle><jtitle>IEEE robotics and automation letters</jtitle><stitle>LRA</stitle><date>2023-12-01</date><risdate>2023</risdate><volume>8</volume><issue>12</issue><spage>8160</spage><epage>8167</epage><pages>8160-8167</pages><issn>2377-3766</issn><eissn>2377-3766</eissn><coden>IRALC6</coden><abstract>This study proposes a bidirectional double-spring pneumatic artificial muscle (PAM) with inductive self-sensing for wearable robotic devices. The actuator structure, composed of commercially available latex and springs, enables a low-cost and consistent manufacturing process. Springs, which serve as the skeleton of the actuator, were used to increase the stability and stiffness of the structure, as well as to embed a self-sensing ability using the inductance of the spring. The actuator design parameters were selected through simulations to prevent buckling while achieving a notable actuation performance. The bidirectional force characteristics of the actuator were evaluated through quasi-static experiments, and the inductance-based length-sensing performance was validated during both contraction and elongation. The need for self-sensing in bidirectional actuation was emphasized through closed-loop length control. The proposed actuator can potentially enable the development of lightweight and efficient wearable robotic devices with improved sensing and actuation capabilities.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LRA.2023.3326660</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-2012-4444</orcidid><orcidid>https://orcid.org/0000-0002-1825-6325</orcidid><orcidid>https://orcid.org/0000-0002-0393-8622</orcidid><orcidid>https://orcid.org/0000-0001-5121-2917</orcidid><orcidid>https://orcid.org/0009-0009-6095-0896</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2377-3766
ispartof IEEE robotics and automation letters, 2023-12, Vol.8 (12), p.8160-8167
issn 2377-3766
2377-3766
language eng
recordid cdi_proquest_journals_2884893461
source IEEE Electronic Library (IEL) Journals
subjects Actuation
Actuator design
Actuators
Artificial muscles
Closed loops
Control
Design parameters
Elongation
Force
Inductance
Latex
learning for soft robots
modeling
Robot sensing systems
soft robot materials and design
Soft robotics
Soft sensors
soft sensors and actuators
Springs
Wearable robots
Wearable technology
title Bidirectional Double-Spring Pneumatic Artificial Muscle With Inductive Self-Sensing
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T23%3A03%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bidirectional%20Double-Spring%20Pneumatic%20Artificial%20Muscle%20With%20Inductive%20Self-Sensing&rft.jtitle=IEEE%20robotics%20and%20automation%20letters&rft.au=Cho,%20Yeonha&rft.date=2023-12-01&rft.volume=8&rft.issue=12&rft.spage=8160&rft.epage=8167&rft.pages=8160-8167&rft.issn=2377-3766&rft.eissn=2377-3766&rft.coden=IRALC6&rft_id=info:doi/10.1109/LRA.2023.3326660&rft_dat=%3Cproquest_ieee_%3E2884893461%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c292t-2cd98c75a401cc43aadecfbb5994ea223eaf0c14847f834fe3d24c5d97c188443%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2884893461&rft_id=info:pmid/&rft_ieee_id=10290951&rfr_iscdi=true