Loading…

Coverage Path Planning With Budget Constraints for Multiple Unmanned Ground Vehicles

This paper proposes an innovative approach to coverage path planning and obstacle avoidance for multiple Unmanned Ground Vehicles (UGVs) in a changing environment, taking into account constraints on the time, path length, number of UGVs and obstacles. Our approach leverages deformable virtual leader...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on intelligent transportation systems 2023-11, Vol.24 (11), p.1-17
Main Authors: Tran, Vu Phi, Perera, Asanka, Garratt, Matthew A., Kasmarik, Kathryn, Anavatti, Sreenatha G.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c294t-114229bfc05e7d929e4a15719fedb222a3007d5a4081bddff80d2181d45ca0773
cites cdi_FETCH-LOGICAL-c294t-114229bfc05e7d929e4a15719fedb222a3007d5a4081bddff80d2181d45ca0773
container_end_page 17
container_issue 11
container_start_page 1
container_title IEEE transactions on intelligent transportation systems
container_volume 24
creator Tran, Vu Phi
Perera, Asanka
Garratt, Matthew A.
Kasmarik, Kathryn
Anavatti, Sreenatha G.
description This paper proposes an innovative approach to coverage path planning and obstacle avoidance for multiple Unmanned Ground Vehicles (UGVs) in a changing environment, taking into account constraints on the time, path length, number of UGVs and obstacles. Our approach leverages deformable virtual leader-follower formations to enable UGVs to adapt their formation based on both planned and real-time sensor data. A hierarchical block algorithm is employed to identify areas in the environment where UGV formations can spread out to meet time and budget constraints. Additionally, we introduce a novel control scheme that allows each UGV to generate a local steering force to dodge any static and mobile obstacles based on the closest safe angle. Results from simulations and real UGV experiments demonstrate that our approach achieves a higher coverage percentage than rule-based and reactive swarming approaches without planning. Our approach offers a promising solution for efficient coverage path planning and obstacle avoidance in complex environments with multiple UGVs.
doi_str_mv 10.1109/TITS.2023.3285624
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2884895790</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10168054</ieee_id><sourcerecordid>2884895790</sourcerecordid><originalsourceid>FETCH-LOGICAL-c294t-114229bfc05e7d929e4a15719fedb222a3007d5a4081bddff80d2181d45ca0773</originalsourceid><addsrcrecordid>eNpNkF1LwzAUhosoOKc_QPAi4HVnTpqsyaUWnYOJAzu9DFlzunV06UxawX9vy3bh1fngec-BJ4pugU4AqHrI5_nHhFGWTBImxZTxs2gEQsiYUpieDz3jsaKCXkZXIez6LRcAoyjPmh_0ZoNkadotWdbGucptyFfVT0-d3WBLssaF1pvKtYGUjSdvXd1WhxrJyu17HC2Z-aZzlnzitipqDNfRRWnqgDenOo5WL8959hov3mfz7HERF0zxNgbgjKl1WVCBqVVMITcgUlAl2jVjzCSUplYYTiWsrS1LSS0DCZaLwtA0TcbR_fHuwTffHYZW75rOu_6lZlJyqUSqaE_BkSp8E4LHUh98tTf-VwPVgzw9yNODPH2S12fujpkKEf_xMJVU8OQPLUVqxg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2884895790</pqid></control><display><type>article</type><title>Coverage Path Planning With Budget Constraints for Multiple Unmanned Ground Vehicles</title><source>IEEE Xplore (Online service)</source><creator>Tran, Vu Phi ; Perera, Asanka ; Garratt, Matthew A. ; Kasmarik, Kathryn ; Anavatti, Sreenatha G.</creator><creatorcontrib>Tran, Vu Phi ; Perera, Asanka ; Garratt, Matthew A. ; Kasmarik, Kathryn ; Anavatti, Sreenatha G.</creatorcontrib><description>This paper proposes an innovative approach to coverage path planning and obstacle avoidance for multiple Unmanned Ground Vehicles (UGVs) in a changing environment, taking into account constraints on the time, path length, number of UGVs and obstacles. Our approach leverages deformable virtual leader-follower formations to enable UGVs to adapt their formation based on both planned and real-time sensor data. A hierarchical block algorithm is employed to identify areas in the environment where UGV formations can spread out to meet time and budget constraints. Additionally, we introduce a novel control scheme that allows each UGV to generate a local steering force to dodge any static and mobile obstacles based on the closest safe angle. Results from simulations and real UGV experiments demonstrate that our approach achieves a higher coverage percentage than rule-based and reactive swarming approaches without planning. Our approach offers a promising solution for efficient coverage path planning and obstacle avoidance in complex environments with multiple UGVs.</description><identifier>ISSN: 1524-9050</identifier><identifier>EISSN: 1558-0016</identifier><identifier>DOI: 10.1109/TITS.2023.3285624</identifier><identifier>CODEN: ITISFG</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; autonomous vehicles ; Budgets ; Changing environments ; Coverage path planning ; Formability ; formation control ; Obstacle avoidance ; optimisation technique ; Path planning ; spanning tree coverage ; Steering ; Swarming ; Unmanned ground vehicles</subject><ispartof>IEEE transactions on intelligent transportation systems, 2023-11, Vol.24 (11), p.1-17</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c294t-114229bfc05e7d929e4a15719fedb222a3007d5a4081bddff80d2181d45ca0773</citedby><cites>FETCH-LOGICAL-c294t-114229bfc05e7d929e4a15719fedb222a3007d5a4081bddff80d2181d45ca0773</cites><orcidid>0000-0002-4754-8191 ; 0000-0003-4296-6914 ; 0000-0003-4021-3943 ; 0000-0003-0222-430X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10168054$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Tran, Vu Phi</creatorcontrib><creatorcontrib>Perera, Asanka</creatorcontrib><creatorcontrib>Garratt, Matthew A.</creatorcontrib><creatorcontrib>Kasmarik, Kathryn</creatorcontrib><creatorcontrib>Anavatti, Sreenatha G.</creatorcontrib><title>Coverage Path Planning With Budget Constraints for Multiple Unmanned Ground Vehicles</title><title>IEEE transactions on intelligent transportation systems</title><addtitle>TITS</addtitle><description>This paper proposes an innovative approach to coverage path planning and obstacle avoidance for multiple Unmanned Ground Vehicles (UGVs) in a changing environment, taking into account constraints on the time, path length, number of UGVs and obstacles. Our approach leverages deformable virtual leader-follower formations to enable UGVs to adapt their formation based on both planned and real-time sensor data. A hierarchical block algorithm is employed to identify areas in the environment where UGV formations can spread out to meet time and budget constraints. Additionally, we introduce a novel control scheme that allows each UGV to generate a local steering force to dodge any static and mobile obstacles based on the closest safe angle. Results from simulations and real UGV experiments demonstrate that our approach achieves a higher coverage percentage than rule-based and reactive swarming approaches without planning. Our approach offers a promising solution for efficient coverage path planning and obstacle avoidance in complex environments with multiple UGVs.</description><subject>Algorithms</subject><subject>autonomous vehicles</subject><subject>Budgets</subject><subject>Changing environments</subject><subject>Coverage path planning</subject><subject>Formability</subject><subject>formation control</subject><subject>Obstacle avoidance</subject><subject>optimisation technique</subject><subject>Path planning</subject><subject>spanning tree coverage</subject><subject>Steering</subject><subject>Swarming</subject><subject>Unmanned ground vehicles</subject><issn>1524-9050</issn><issn>1558-0016</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpNkF1LwzAUhosoOKc_QPAi4HVnTpqsyaUWnYOJAzu9DFlzunV06UxawX9vy3bh1fngec-BJ4pugU4AqHrI5_nHhFGWTBImxZTxs2gEQsiYUpieDz3jsaKCXkZXIez6LRcAoyjPmh_0ZoNkadotWdbGucptyFfVT0-d3WBLssaF1pvKtYGUjSdvXd1WhxrJyu17HC2Z-aZzlnzitipqDNfRRWnqgDenOo5WL8959hov3mfz7HERF0zxNgbgjKl1WVCBqVVMITcgUlAl2jVjzCSUplYYTiWsrS1LSS0DCZaLwtA0TcbR_fHuwTffHYZW75rOu_6lZlJyqUSqaE_BkSp8E4LHUh98tTf-VwPVgzw9yNODPH2S12fujpkKEf_xMJVU8OQPLUVqxg</recordid><startdate>20231101</startdate><enddate>20231101</enddate><creator>Tran, Vu Phi</creator><creator>Perera, Asanka</creator><creator>Garratt, Matthew A.</creator><creator>Kasmarik, Kathryn</creator><creator>Anavatti, Sreenatha G.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-4754-8191</orcidid><orcidid>https://orcid.org/0000-0003-4296-6914</orcidid><orcidid>https://orcid.org/0000-0003-4021-3943</orcidid><orcidid>https://orcid.org/0000-0003-0222-430X</orcidid></search><sort><creationdate>20231101</creationdate><title>Coverage Path Planning With Budget Constraints for Multiple Unmanned Ground Vehicles</title><author>Tran, Vu Phi ; Perera, Asanka ; Garratt, Matthew A. ; Kasmarik, Kathryn ; Anavatti, Sreenatha G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c294t-114229bfc05e7d929e4a15719fedb222a3007d5a4081bddff80d2181d45ca0773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>autonomous vehicles</topic><topic>Budgets</topic><topic>Changing environments</topic><topic>Coverage path planning</topic><topic>Formability</topic><topic>formation control</topic><topic>Obstacle avoidance</topic><topic>optimisation technique</topic><topic>Path planning</topic><topic>spanning tree coverage</topic><topic>Steering</topic><topic>Swarming</topic><topic>Unmanned ground vehicles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tran, Vu Phi</creatorcontrib><creatorcontrib>Perera, Asanka</creatorcontrib><creatorcontrib>Garratt, Matthew A.</creatorcontrib><creatorcontrib>Kasmarik, Kathryn</creatorcontrib><creatorcontrib>Anavatti, Sreenatha G.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore (Online service)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on intelligent transportation systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tran, Vu Phi</au><au>Perera, Asanka</au><au>Garratt, Matthew A.</au><au>Kasmarik, Kathryn</au><au>Anavatti, Sreenatha G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Coverage Path Planning With Budget Constraints for Multiple Unmanned Ground Vehicles</atitle><jtitle>IEEE transactions on intelligent transportation systems</jtitle><stitle>TITS</stitle><date>2023-11-01</date><risdate>2023</risdate><volume>24</volume><issue>11</issue><spage>1</spage><epage>17</epage><pages>1-17</pages><issn>1524-9050</issn><eissn>1558-0016</eissn><coden>ITISFG</coden><abstract>This paper proposes an innovative approach to coverage path planning and obstacle avoidance for multiple Unmanned Ground Vehicles (UGVs) in a changing environment, taking into account constraints on the time, path length, number of UGVs and obstacles. Our approach leverages deformable virtual leader-follower formations to enable UGVs to adapt their formation based on both planned and real-time sensor data. A hierarchical block algorithm is employed to identify areas in the environment where UGV formations can spread out to meet time and budget constraints. Additionally, we introduce a novel control scheme that allows each UGV to generate a local steering force to dodge any static and mobile obstacles based on the closest safe angle. Results from simulations and real UGV experiments demonstrate that our approach achieves a higher coverage percentage than rule-based and reactive swarming approaches without planning. Our approach offers a promising solution for efficient coverage path planning and obstacle avoidance in complex environments with multiple UGVs.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TITS.2023.3285624</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-4754-8191</orcidid><orcidid>https://orcid.org/0000-0003-4296-6914</orcidid><orcidid>https://orcid.org/0000-0003-4021-3943</orcidid><orcidid>https://orcid.org/0000-0003-0222-430X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1524-9050
ispartof IEEE transactions on intelligent transportation systems, 2023-11, Vol.24 (11), p.1-17
issn 1524-9050
1558-0016
language eng
recordid cdi_proquest_journals_2884895790
source IEEE Xplore (Online service)
subjects Algorithms
autonomous vehicles
Budgets
Changing environments
Coverage path planning
Formability
formation control
Obstacle avoidance
optimisation technique
Path planning
spanning tree coverage
Steering
Swarming
Unmanned ground vehicles
title Coverage Path Planning With Budget Constraints for Multiple Unmanned Ground Vehicles
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T18%3A46%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Coverage%20Path%20Planning%20With%20Budget%20Constraints%20for%20Multiple%20Unmanned%20Ground%20Vehicles&rft.jtitle=IEEE%20transactions%20on%20intelligent%20transportation%20systems&rft.au=Tran,%20Vu%20Phi&rft.date=2023-11-01&rft.volume=24&rft.issue=11&rft.spage=1&rft.epage=17&rft.pages=1-17&rft.issn=1524-9050&rft.eissn=1558-0016&rft.coden=ITISFG&rft_id=info:doi/10.1109/TITS.2023.3285624&rft_dat=%3Cproquest_cross%3E2884895790%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c294t-114229bfc05e7d929e4a15719fedb222a3007d5a4081bddff80d2181d45ca0773%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2884895790&rft_id=info:pmid/&rft_ieee_id=10168054&rfr_iscdi=true