Loading…
Quantum Subspace Correction for Constraints
We demonstrate that it is possible to construct operators that stabilize the constraint-satisfying subspaces of computational problems in their Ising representations. We provide an explicit recipe to construct unitaries and associated measurements given a set of constraints. The stabilizer measureme...
Saved in:
Published in: | arXiv.org 2024-02 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Pawlak, Kelly Ann Epstein, Jeffrey M Crow, Daniel Gandhari, Srilekha Li, Ming Bohdanowicz, Thomas C King, Jonathan |
description | We demonstrate that it is possible to construct operators that stabilize the constraint-satisfying subspaces of computational problems in their Ising representations. We provide an explicit recipe to construct unitaries and associated measurements given a set of constraints. The stabilizer measurements allow the detection of constraint violations, and provide a route to recovery back into the constrained subspace. We call this technique ''quantum subspace correction". As an example, we explicitly investigate the stabilizers using the simplest local constraint subspace: Independent Set. We find an algorithm that is guaranteed to produce a perfect uniform or weighted distribution over all constraint-satisfying states when paired with a stopping condition: a quantum analogue of partial rejection sampling. The stopping condition can be modified for sub-graph approximations. We show that it can prepare exact Gibbs distributions on \(d-\)regular graphs below a critical hardness \(\lambda_d^*\) in sub-linear time. Finally, we look at a potential use of quantum subspace correction for fault-tolerant depth-reduction. In particular we investigate how the technique detects and recovers errors induced by Trotterization in preparing maximum independent set using an adiabatic state preparation algorithm. |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2884926434</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2884926434</sourcerecordid><originalsourceid>FETCH-proquest_journals_28849264343</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mTQDixNzCspzVUILk0qLkhMTlVwzi8qSk0uyczPU0jLLwJy84pLihIz80qKeRhY0xJzilN5oTQ3g7Kba4izh25BUX5haWpxSXxWfmlRHlAq3sjCwsTSyMzE2MSYOFUAdk4xrA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2884926434</pqid></control><display><type>article</type><title>Quantum Subspace Correction for Constraints</title><source>Publicly Available Content Database</source><creator>Pawlak, Kelly Ann ; Epstein, Jeffrey M ; Crow, Daniel ; Gandhari, Srilekha ; Li, Ming ; Bohdanowicz, Thomas C ; King, Jonathan</creator><creatorcontrib>Pawlak, Kelly Ann ; Epstein, Jeffrey M ; Crow, Daniel ; Gandhari, Srilekha ; Li, Ming ; Bohdanowicz, Thomas C ; King, Jonathan</creatorcontrib><description>We demonstrate that it is possible to construct operators that stabilize the constraint-satisfying subspaces of computational problems in their Ising representations. We provide an explicit recipe to construct unitaries and associated measurements given a set of constraints. The stabilizer measurements allow the detection of constraint violations, and provide a route to recovery back into the constrained subspace. We call this technique ''quantum subspace correction". As an example, we explicitly investigate the stabilizers using the simplest local constraint subspace: Independent Set. We find an algorithm that is guaranteed to produce a perfect uniform or weighted distribution over all constraint-satisfying states when paired with a stopping condition: a quantum analogue of partial rejection sampling. The stopping condition can be modified for sub-graph approximations. We show that it can prepare exact Gibbs distributions on \(d-\)regular graphs below a critical hardness \(\lambda_d^*\) in sub-linear time. Finally, we look at a potential use of quantum subspace correction for fault-tolerant depth-reduction. In particular we investigate how the technique detects and recovers errors induced by Trotterization in preparing maximum independent set using an adiabatic state preparation algorithm.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Constraints ; Fault tolerance ; Ising model ; Subspaces</subject><ispartof>arXiv.org, 2024-02</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2884926434?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,37012,44590</link.rule.ids></links><search><creatorcontrib>Pawlak, Kelly Ann</creatorcontrib><creatorcontrib>Epstein, Jeffrey M</creatorcontrib><creatorcontrib>Crow, Daniel</creatorcontrib><creatorcontrib>Gandhari, Srilekha</creatorcontrib><creatorcontrib>Li, Ming</creatorcontrib><creatorcontrib>Bohdanowicz, Thomas C</creatorcontrib><creatorcontrib>King, Jonathan</creatorcontrib><title>Quantum Subspace Correction for Constraints</title><title>arXiv.org</title><description>We demonstrate that it is possible to construct operators that stabilize the constraint-satisfying subspaces of computational problems in their Ising representations. We provide an explicit recipe to construct unitaries and associated measurements given a set of constraints. The stabilizer measurements allow the detection of constraint violations, and provide a route to recovery back into the constrained subspace. We call this technique ''quantum subspace correction". As an example, we explicitly investigate the stabilizers using the simplest local constraint subspace: Independent Set. We find an algorithm that is guaranteed to produce a perfect uniform or weighted distribution over all constraint-satisfying states when paired with a stopping condition: a quantum analogue of partial rejection sampling. The stopping condition can be modified for sub-graph approximations. We show that it can prepare exact Gibbs distributions on \(d-\)regular graphs below a critical hardness \(\lambda_d^*\) in sub-linear time. Finally, we look at a potential use of quantum subspace correction for fault-tolerant depth-reduction. In particular we investigate how the technique detects and recovers errors induced by Trotterization in preparing maximum independent set using an adiabatic state preparation algorithm.</description><subject>Algorithms</subject><subject>Constraints</subject><subject>Fault tolerance</subject><subject>Ising model</subject><subject>Subspaces</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mTQDixNzCspzVUILk0qLkhMTlVwzi8qSk0uyczPU0jLLwJy84pLihIz80qKeRhY0xJzilN5oTQ3g7Kba4izh25BUX5haWpxSXxWfmlRHlAq3sjCwsTSyMzE2MSYOFUAdk4xrA</recordid><startdate>20240207</startdate><enddate>20240207</enddate><creator>Pawlak, Kelly Ann</creator><creator>Epstein, Jeffrey M</creator><creator>Crow, Daniel</creator><creator>Gandhari, Srilekha</creator><creator>Li, Ming</creator><creator>Bohdanowicz, Thomas C</creator><creator>King, Jonathan</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240207</creationdate><title>Quantum Subspace Correction for Constraints</title><author>Pawlak, Kelly Ann ; Epstein, Jeffrey M ; Crow, Daniel ; Gandhari, Srilekha ; Li, Ming ; Bohdanowicz, Thomas C ; King, Jonathan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_28849264343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Constraints</topic><topic>Fault tolerance</topic><topic>Ising model</topic><topic>Subspaces</topic><toplevel>online_resources</toplevel><creatorcontrib>Pawlak, Kelly Ann</creatorcontrib><creatorcontrib>Epstein, Jeffrey M</creatorcontrib><creatorcontrib>Crow, Daniel</creatorcontrib><creatorcontrib>Gandhari, Srilekha</creatorcontrib><creatorcontrib>Li, Ming</creatorcontrib><creatorcontrib>Bohdanowicz, Thomas C</creatorcontrib><creatorcontrib>King, Jonathan</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pawlak, Kelly Ann</au><au>Epstein, Jeffrey M</au><au>Crow, Daniel</au><au>Gandhari, Srilekha</au><au>Li, Ming</au><au>Bohdanowicz, Thomas C</au><au>King, Jonathan</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Quantum Subspace Correction for Constraints</atitle><jtitle>arXiv.org</jtitle><date>2024-02-07</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>We demonstrate that it is possible to construct operators that stabilize the constraint-satisfying subspaces of computational problems in their Ising representations. We provide an explicit recipe to construct unitaries and associated measurements given a set of constraints. The stabilizer measurements allow the detection of constraint violations, and provide a route to recovery back into the constrained subspace. We call this technique ''quantum subspace correction". As an example, we explicitly investigate the stabilizers using the simplest local constraint subspace: Independent Set. We find an algorithm that is guaranteed to produce a perfect uniform or weighted distribution over all constraint-satisfying states when paired with a stopping condition: a quantum analogue of partial rejection sampling. The stopping condition can be modified for sub-graph approximations. We show that it can prepare exact Gibbs distributions on \(d-\)regular graphs below a critical hardness \(\lambda_d^*\) in sub-linear time. Finally, we look at a potential use of quantum subspace correction for fault-tolerant depth-reduction. In particular we investigate how the technique detects and recovers errors induced by Trotterization in preparing maximum independent set using an adiabatic state preparation algorithm.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-02 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2884926434 |
source | Publicly Available Content Database |
subjects | Algorithms Constraints Fault tolerance Ising model Subspaces |
title | Quantum Subspace Correction for Constraints |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T06%3A03%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Quantum%20Subspace%20Correction%20for%20Constraints&rft.jtitle=arXiv.org&rft.au=Pawlak,%20Kelly%20Ann&rft.date=2024-02-07&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2884926434%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_28849264343%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2884926434&rft_id=info:pmid/&rfr_iscdi=true |