Loading…

Persistence of sub-chain groups

In this work, we present a generalization of extended persistent homology to filtrations of graded sub-groups by defining relative homology in this setting. Our work provides a more comprehensive and flexible approach to get an algebraic invariant overcoming the limitations of the standard approach....

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2023-10
Main Authors: Sun, Fang, Xie, Shengwen, Zhao, Xuezhi
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Sun, Fang
Xie, Shengwen
Zhao, Xuezhi
description In this work, we present a generalization of extended persistent homology to filtrations of graded sub-groups by defining relative homology in this setting. Our work provides a more comprehensive and flexible approach to get an algebraic invariant overcoming the limitations of the standard approach. The main contribution of our work is the development of a stability theorem for extended persistence modules using an extension of the definition of interleaving and the rectangle measure. This stability theorem is a crucial property for the application of mathematical tools in data analysis. We apply the stability theorem to extended persistence modules obtained from extended path homology of directed graphs and extended homology of hypergraphs, which are two important examples in topological data analysis.
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2884927353</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2884927353</sourcerecordid><originalsourceid>FETCH-proquest_journals_28849273533</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSQD0gtKs4sLknNS05VyE9TKC5N0k3OSMzMU0gvyi8tKOZhYE1LzClO5YXS3AzKbq4hzh66BUX5haWpxSXxWfmlRXlAqXgjCwsTSyNzY1NjY-JUAQDNbize</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2884927353</pqid></control><display><type>article</type><title>Persistence of sub-chain groups</title><source>Publicly Available Content Database</source><creator>Sun, Fang ; Xie, Shengwen ; Zhao, Xuezhi</creator><creatorcontrib>Sun, Fang ; Xie, Shengwen ; Zhao, Xuezhi</creatorcontrib><description>In this work, we present a generalization of extended persistent homology to filtrations of graded sub-groups by defining relative homology in this setting. Our work provides a more comprehensive and flexible approach to get an algebraic invariant overcoming the limitations of the standard approach. The main contribution of our work is the development of a stability theorem for extended persistence modules using an extension of the definition of interleaving and the rectangle measure. This stability theorem is a crucial property for the application of mathematical tools in data analysis. We apply the stability theorem to extended persistence modules obtained from extended path homology of directed graphs and extended homology of hypergraphs, which are two important examples in topological data analysis.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Data analysis ; Graph theory ; Homology ; Mathematical analysis ; Modules ; Stability analysis ; Theorems</subject><ispartof>arXiv.org, 2023-10</ispartof><rights>2023. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2884927353?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,37012,44590</link.rule.ids></links><search><creatorcontrib>Sun, Fang</creatorcontrib><creatorcontrib>Xie, Shengwen</creatorcontrib><creatorcontrib>Zhao, Xuezhi</creatorcontrib><title>Persistence of sub-chain groups</title><title>arXiv.org</title><description>In this work, we present a generalization of extended persistent homology to filtrations of graded sub-groups by defining relative homology in this setting. Our work provides a more comprehensive and flexible approach to get an algebraic invariant overcoming the limitations of the standard approach. The main contribution of our work is the development of a stability theorem for extended persistence modules using an extension of the definition of interleaving and the rectangle measure. This stability theorem is a crucial property for the application of mathematical tools in data analysis. We apply the stability theorem to extended persistence modules obtained from extended path homology of directed graphs and extended homology of hypergraphs, which are two important examples in topological data analysis.</description><subject>Data analysis</subject><subject>Graph theory</subject><subject>Homology</subject><subject>Mathematical analysis</subject><subject>Modules</subject><subject>Stability analysis</subject><subject>Theorems</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSQD0gtKs4sLknNS05VyE9TKC5N0k3OSMzMU0gvyi8tKOZhYE1LzClO5YXS3AzKbq4hzh66BUX5haWpxSXxWfmlRXlAqXgjCwsTSyNzY1NjY-JUAQDNbize</recordid><startdate>20231031</startdate><enddate>20231031</enddate><creator>Sun, Fang</creator><creator>Xie, Shengwen</creator><creator>Zhao, Xuezhi</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20231031</creationdate><title>Persistence of sub-chain groups</title><author>Sun, Fang ; Xie, Shengwen ; Zhao, Xuezhi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_28849273533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Data analysis</topic><topic>Graph theory</topic><topic>Homology</topic><topic>Mathematical analysis</topic><topic>Modules</topic><topic>Stability analysis</topic><topic>Theorems</topic><toplevel>online_resources</toplevel><creatorcontrib>Sun, Fang</creatorcontrib><creatorcontrib>Xie, Shengwen</creatorcontrib><creatorcontrib>Zhao, Xuezhi</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, Fang</au><au>Xie, Shengwen</au><au>Zhao, Xuezhi</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Persistence of sub-chain groups</atitle><jtitle>arXiv.org</jtitle><date>2023-10-31</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>In this work, we present a generalization of extended persistent homology to filtrations of graded sub-groups by defining relative homology in this setting. Our work provides a more comprehensive and flexible approach to get an algebraic invariant overcoming the limitations of the standard approach. The main contribution of our work is the development of a stability theorem for extended persistence modules using an extension of the definition of interleaving and the rectangle measure. This stability theorem is a crucial property for the application of mathematical tools in data analysis. We apply the stability theorem to extended persistence modules obtained from extended path homology of directed graphs and extended homology of hypergraphs, which are two important examples in topological data analysis.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2023-10
issn 2331-8422
language eng
recordid cdi_proquest_journals_2884927353
source Publicly Available Content Database
subjects Data analysis
Graph theory
Homology
Mathematical analysis
Modules
Stability analysis
Theorems
title Persistence of sub-chain groups
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T07%3A19%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Persistence%20of%20sub-chain%20groups&rft.jtitle=arXiv.org&rft.au=Sun,%20Fang&rft.date=2023-10-31&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2884927353%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_28849273533%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2884927353&rft_id=info:pmid/&rfr_iscdi=true