Loading…

nvblox: GPU-Accelerated Incremental Signed Distance Field Mapping

Dense, volumetric maps are essential to enable robot navigation and interaction with the environment. To achieve low latency, dense maps are typically computed onboard the robot, often on computationally constrained hardware. Previous works leave a gap between CPU-based systems for robotic mapping w...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2024-03
Main Authors: Millane, Alexander, Oleynikova, Helen, Wirbel, Emilie, Steiner, Remo, Ramasamy, Vikram, Tingdahl, David, Siegwart, Roland
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Millane, Alexander
Oleynikova, Helen
Wirbel, Emilie
Steiner, Remo
Ramasamy, Vikram
Tingdahl, David
Siegwart, Roland
description Dense, volumetric maps are essential to enable robot navigation and interaction with the environment. To achieve low latency, dense maps are typically computed onboard the robot, often on computationally constrained hardware. Previous works leave a gap between CPU-based systems for robotic mapping which, due to computation constraints, limit map resolution or scale, and GPU-based reconstruction systems which omit features that are critical to robotic path planning, such as computation of the Euclidean Signed Distance Field (ESDF). We introduce a library, nvblox, that aims to fill this gap, by GPU-accelerating robotic volumetric mapping. Nvblox delivers a significant performance improvement over the state of the art, achieving up to a 177x speed-up in surface reconstruction, and up to a 31x improvement in distance field computation, and is available open-source.
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2885375219</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2885375219</sourcerecordid><originalsourceid>FETCH-proquest_journals_28853752193</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mRwzCtLysmvsFJwDwjVdUxOTs1JLUosSU1R8MxLLkrNTc0rScxRCM5MzwMKuWQWlyTmJacquGWm5qQo-CYWFGTmpfMwsKYl5hSn8kJpbgZlN9cQZw_dgqL8wtLU4pL4rPzSojygVLyRhYWpsbmpkaGlMXGqACCeOMo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2885375219</pqid></control><display><type>article</type><title>nvblox: GPU-Accelerated Incremental Signed Distance Field Mapping</title><source>Publicly Available Content Database</source><creator>Millane, Alexander ; Oleynikova, Helen ; Wirbel, Emilie ; Steiner, Remo ; Ramasamy, Vikram ; Tingdahl, David ; Siegwart, Roland</creator><creatorcontrib>Millane, Alexander ; Oleynikova, Helen ; Wirbel, Emilie ; Steiner, Remo ; Ramasamy, Vikram ; Tingdahl, David ; Siegwart, Roland</creatorcontrib><description>Dense, volumetric maps are essential to enable robot navigation and interaction with the environment. To achieve low latency, dense maps are typically computed onboard the robot, often on computationally constrained hardware. Previous works leave a gap between CPU-based systems for robotic mapping which, due to computation constraints, limit map resolution or scale, and GPU-based reconstruction systems which omit features that are critical to robotic path planning, such as computation of the Euclidean Signed Distance Field (ESDF). We introduce a library, nvblox, that aims to fill this gap, by GPU-accelerating robotic volumetric mapping. Nvblox delivers a significant performance improvement over the state of the art, achieving up to a 177x speed-up in surface reconstruction, and up to a 31x improvement in distance field computation, and is available open-source.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Computation ; Constraints ; Graphics processing units ; Mapping ; Reconstruction ; Robustness (mathematics)</subject><ispartof>arXiv.org, 2024-03</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2885375219?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25751,37010,44588</link.rule.ids></links><search><creatorcontrib>Millane, Alexander</creatorcontrib><creatorcontrib>Oleynikova, Helen</creatorcontrib><creatorcontrib>Wirbel, Emilie</creatorcontrib><creatorcontrib>Steiner, Remo</creatorcontrib><creatorcontrib>Ramasamy, Vikram</creatorcontrib><creatorcontrib>Tingdahl, David</creatorcontrib><creatorcontrib>Siegwart, Roland</creatorcontrib><title>nvblox: GPU-Accelerated Incremental Signed Distance Field Mapping</title><title>arXiv.org</title><description>Dense, volumetric maps are essential to enable robot navigation and interaction with the environment. To achieve low latency, dense maps are typically computed onboard the robot, often on computationally constrained hardware. Previous works leave a gap between CPU-based systems for robotic mapping which, due to computation constraints, limit map resolution or scale, and GPU-based reconstruction systems which omit features that are critical to robotic path planning, such as computation of the Euclidean Signed Distance Field (ESDF). We introduce a library, nvblox, that aims to fill this gap, by GPU-accelerating robotic volumetric mapping. Nvblox delivers a significant performance improvement over the state of the art, achieving up to a 177x speed-up in surface reconstruction, and up to a 31x improvement in distance field computation, and is available open-source.</description><subject>Computation</subject><subject>Constraints</subject><subject>Graphics processing units</subject><subject>Mapping</subject><subject>Reconstruction</subject><subject>Robustness (mathematics)</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mRwzCtLysmvsFJwDwjVdUxOTs1JLUosSU1R8MxLLkrNTc0rScxRCM5MzwMKuWQWlyTmJacquGWm5qQo-CYWFGTmpfMwsKYl5hSn8kJpbgZlN9cQZw_dgqL8wtLU4pL4rPzSojygVLyRhYWpsbmpkaGlMXGqACCeOMo</recordid><startdate>20240315</startdate><enddate>20240315</enddate><creator>Millane, Alexander</creator><creator>Oleynikova, Helen</creator><creator>Wirbel, Emilie</creator><creator>Steiner, Remo</creator><creator>Ramasamy, Vikram</creator><creator>Tingdahl, David</creator><creator>Siegwart, Roland</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240315</creationdate><title>nvblox: GPU-Accelerated Incremental Signed Distance Field Mapping</title><author>Millane, Alexander ; Oleynikova, Helen ; Wirbel, Emilie ; Steiner, Remo ; Ramasamy, Vikram ; Tingdahl, David ; Siegwart, Roland</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_28853752193</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Computation</topic><topic>Constraints</topic><topic>Graphics processing units</topic><topic>Mapping</topic><topic>Reconstruction</topic><topic>Robustness (mathematics)</topic><toplevel>online_resources</toplevel><creatorcontrib>Millane, Alexander</creatorcontrib><creatorcontrib>Oleynikova, Helen</creatorcontrib><creatorcontrib>Wirbel, Emilie</creatorcontrib><creatorcontrib>Steiner, Remo</creatorcontrib><creatorcontrib>Ramasamy, Vikram</creatorcontrib><creatorcontrib>Tingdahl, David</creatorcontrib><creatorcontrib>Siegwart, Roland</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Millane, Alexander</au><au>Oleynikova, Helen</au><au>Wirbel, Emilie</au><au>Steiner, Remo</au><au>Ramasamy, Vikram</au><au>Tingdahl, David</au><au>Siegwart, Roland</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>nvblox: GPU-Accelerated Incremental Signed Distance Field Mapping</atitle><jtitle>arXiv.org</jtitle><date>2024-03-15</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Dense, volumetric maps are essential to enable robot navigation and interaction with the environment. To achieve low latency, dense maps are typically computed onboard the robot, often on computationally constrained hardware. Previous works leave a gap between CPU-based systems for robotic mapping which, due to computation constraints, limit map resolution or scale, and GPU-based reconstruction systems which omit features that are critical to robotic path planning, such as computation of the Euclidean Signed Distance Field (ESDF). We introduce a library, nvblox, that aims to fill this gap, by GPU-accelerating robotic volumetric mapping. Nvblox delivers a significant performance improvement over the state of the art, achieving up to a 177x speed-up in surface reconstruction, and up to a 31x improvement in distance field computation, and is available open-source.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-03
issn 2331-8422
language eng
recordid cdi_proquest_journals_2885375219
source Publicly Available Content Database
subjects Computation
Constraints
Graphics processing units
Mapping
Reconstruction
Robustness (mathematics)
title nvblox: GPU-Accelerated Incremental Signed Distance Field Mapping
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T20%3A32%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=nvblox:%20GPU-Accelerated%20Incremental%20Signed%20Distance%20Field%20Mapping&rft.jtitle=arXiv.org&rft.au=Millane,%20Alexander&rft.date=2024-03-15&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2885375219%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_28853752193%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2885375219&rft_id=info:pmid/&rfr_iscdi=true