Loading…
nvblox: GPU-Accelerated Incremental Signed Distance Field Mapping
Dense, volumetric maps are essential to enable robot navigation and interaction with the environment. To achieve low latency, dense maps are typically computed onboard the robot, often on computationally constrained hardware. Previous works leave a gap between CPU-based systems for robotic mapping w...
Saved in:
Published in: | arXiv.org 2024-03 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Millane, Alexander Oleynikova, Helen Wirbel, Emilie Steiner, Remo Ramasamy, Vikram Tingdahl, David Siegwart, Roland |
description | Dense, volumetric maps are essential to enable robot navigation and interaction with the environment. To achieve low latency, dense maps are typically computed onboard the robot, often on computationally constrained hardware. Previous works leave a gap between CPU-based systems for robotic mapping which, due to computation constraints, limit map resolution or scale, and GPU-based reconstruction systems which omit features that are critical to robotic path planning, such as computation of the Euclidean Signed Distance Field (ESDF). We introduce a library, nvblox, that aims to fill this gap, by GPU-accelerating robotic volumetric mapping. Nvblox delivers a significant performance improvement over the state of the art, achieving up to a 177x speed-up in surface reconstruction, and up to a 31x improvement in distance field computation, and is available open-source. |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2885375219</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2885375219</sourcerecordid><originalsourceid>FETCH-proquest_journals_28853752193</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mRwzCtLysmvsFJwDwjVdUxOTs1JLUosSU1R8MxLLkrNTc0rScxRCM5MzwMKuWQWlyTmJacquGWm5qQo-CYWFGTmpfMwsKYl5hSn8kJpbgZlN9cQZw_dgqL8wtLU4pL4rPzSojygVLyRhYWpsbmpkaGlMXGqACCeOMo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2885375219</pqid></control><display><type>article</type><title>nvblox: GPU-Accelerated Incremental Signed Distance Field Mapping</title><source>Publicly Available Content Database</source><creator>Millane, Alexander ; Oleynikova, Helen ; Wirbel, Emilie ; Steiner, Remo ; Ramasamy, Vikram ; Tingdahl, David ; Siegwart, Roland</creator><creatorcontrib>Millane, Alexander ; Oleynikova, Helen ; Wirbel, Emilie ; Steiner, Remo ; Ramasamy, Vikram ; Tingdahl, David ; Siegwart, Roland</creatorcontrib><description>Dense, volumetric maps are essential to enable robot navigation and interaction with the environment. To achieve low latency, dense maps are typically computed onboard the robot, often on computationally constrained hardware. Previous works leave a gap between CPU-based systems for robotic mapping which, due to computation constraints, limit map resolution or scale, and GPU-based reconstruction systems which omit features that are critical to robotic path planning, such as computation of the Euclidean Signed Distance Field (ESDF). We introduce a library, nvblox, that aims to fill this gap, by GPU-accelerating robotic volumetric mapping. Nvblox delivers a significant performance improvement over the state of the art, achieving up to a 177x speed-up in surface reconstruction, and up to a 31x improvement in distance field computation, and is available open-source.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Computation ; Constraints ; Graphics processing units ; Mapping ; Reconstruction ; Robustness (mathematics)</subject><ispartof>arXiv.org, 2024-03</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2885375219?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25751,37010,44588</link.rule.ids></links><search><creatorcontrib>Millane, Alexander</creatorcontrib><creatorcontrib>Oleynikova, Helen</creatorcontrib><creatorcontrib>Wirbel, Emilie</creatorcontrib><creatorcontrib>Steiner, Remo</creatorcontrib><creatorcontrib>Ramasamy, Vikram</creatorcontrib><creatorcontrib>Tingdahl, David</creatorcontrib><creatorcontrib>Siegwart, Roland</creatorcontrib><title>nvblox: GPU-Accelerated Incremental Signed Distance Field Mapping</title><title>arXiv.org</title><description>Dense, volumetric maps are essential to enable robot navigation and interaction with the environment. To achieve low latency, dense maps are typically computed onboard the robot, often on computationally constrained hardware. Previous works leave a gap between CPU-based systems for robotic mapping which, due to computation constraints, limit map resolution or scale, and GPU-based reconstruction systems which omit features that are critical to robotic path planning, such as computation of the Euclidean Signed Distance Field (ESDF). We introduce a library, nvblox, that aims to fill this gap, by GPU-accelerating robotic volumetric mapping. Nvblox delivers a significant performance improvement over the state of the art, achieving up to a 177x speed-up in surface reconstruction, and up to a 31x improvement in distance field computation, and is available open-source.</description><subject>Computation</subject><subject>Constraints</subject><subject>Graphics processing units</subject><subject>Mapping</subject><subject>Reconstruction</subject><subject>Robustness (mathematics)</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mRwzCtLysmvsFJwDwjVdUxOTs1JLUosSU1R8MxLLkrNTc0rScxRCM5MzwMKuWQWlyTmJacquGWm5qQo-CYWFGTmpfMwsKYl5hSn8kJpbgZlN9cQZw_dgqL8wtLU4pL4rPzSojygVLyRhYWpsbmpkaGlMXGqACCeOMo</recordid><startdate>20240315</startdate><enddate>20240315</enddate><creator>Millane, Alexander</creator><creator>Oleynikova, Helen</creator><creator>Wirbel, Emilie</creator><creator>Steiner, Remo</creator><creator>Ramasamy, Vikram</creator><creator>Tingdahl, David</creator><creator>Siegwart, Roland</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240315</creationdate><title>nvblox: GPU-Accelerated Incremental Signed Distance Field Mapping</title><author>Millane, Alexander ; Oleynikova, Helen ; Wirbel, Emilie ; Steiner, Remo ; Ramasamy, Vikram ; Tingdahl, David ; Siegwart, Roland</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_28853752193</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Computation</topic><topic>Constraints</topic><topic>Graphics processing units</topic><topic>Mapping</topic><topic>Reconstruction</topic><topic>Robustness (mathematics)</topic><toplevel>online_resources</toplevel><creatorcontrib>Millane, Alexander</creatorcontrib><creatorcontrib>Oleynikova, Helen</creatorcontrib><creatorcontrib>Wirbel, Emilie</creatorcontrib><creatorcontrib>Steiner, Remo</creatorcontrib><creatorcontrib>Ramasamy, Vikram</creatorcontrib><creatorcontrib>Tingdahl, David</creatorcontrib><creatorcontrib>Siegwart, Roland</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Millane, Alexander</au><au>Oleynikova, Helen</au><au>Wirbel, Emilie</au><au>Steiner, Remo</au><au>Ramasamy, Vikram</au><au>Tingdahl, David</au><au>Siegwart, Roland</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>nvblox: GPU-Accelerated Incremental Signed Distance Field Mapping</atitle><jtitle>arXiv.org</jtitle><date>2024-03-15</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Dense, volumetric maps are essential to enable robot navigation and interaction with the environment. To achieve low latency, dense maps are typically computed onboard the robot, often on computationally constrained hardware. Previous works leave a gap between CPU-based systems for robotic mapping which, due to computation constraints, limit map resolution or scale, and GPU-based reconstruction systems which omit features that are critical to robotic path planning, such as computation of the Euclidean Signed Distance Field (ESDF). We introduce a library, nvblox, that aims to fill this gap, by GPU-accelerating robotic volumetric mapping. Nvblox delivers a significant performance improvement over the state of the art, achieving up to a 177x speed-up in surface reconstruction, and up to a 31x improvement in distance field computation, and is available open-source.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-03 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2885375219 |
source | Publicly Available Content Database |
subjects | Computation Constraints Graphics processing units Mapping Reconstruction Robustness (mathematics) |
title | nvblox: GPU-Accelerated Incremental Signed Distance Field Mapping |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T20%3A32%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=nvblox:%20GPU-Accelerated%20Incremental%20Signed%20Distance%20Field%20Mapping&rft.jtitle=arXiv.org&rft.au=Millane,%20Alexander&rft.date=2024-03-15&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2885375219%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_28853752193%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2885375219&rft_id=info:pmid/&rfr_iscdi=true |