Loading…
On the Opportunities of Green Computing: A Survey
Artificial Intelligence (AI) has achieved significant advancements in technology and research with the development over several decades, and is widely used in many areas including computing vision, natural language processing, time-series analysis, speech synthesis, etc. During the age of deep learn...
Saved in:
Published in: | arXiv.org 2023-11 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Zhou, You Lin, Xiujing Zhang, Xiang Wang, Maolin Jiang, Gangwei Lu, Huakang Wu, Yupeng Zhang, Kai Yang, Zhe Wang, Kehang Yongduo Sui Jia, Fengwei Tang, Zuoli Zhao, Yao Zhang, Hongxuan Yang, Tiannuo Chen, Weibo Mao, Yunong Li, Yi Bao, De Li, Yu Liao, Hongrui Liu, Ting Liu, Jingwen Guo, Jinchi Zhao, Xiangyu WEI, Ying Qian, Hong Liu, Qi Wang, Xiang Kin, Wai Chan Li, Chenliang Li, Yusen Yang, Shiyu Yan, Jining Mou, Chao Han, Shuai Jin, Wuxia Zhang, Guannan Zeng, Xiaodong |
description | Artificial Intelligence (AI) has achieved significant advancements in technology and research with the development over several decades, and is widely used in many areas including computing vision, natural language processing, time-series analysis, speech synthesis, etc. During the age of deep learning, especially with the arise of Large Language Models, a large majority of researchers' attention is paid on pursuing new state-of-the-art (SOTA) results, resulting in ever increasing of model size and computational complexity. The needs for high computing power brings higher carbon emission and undermines research fairness by preventing small or medium-sized research institutions and companies with limited funding in participating in research. To tackle the challenges of computing resources and environmental impact of AI, Green Computing has become a hot research topic. In this survey, we give a systematic overview of the technologies used in Green Computing. We propose the framework of Green Computing and devide it into four key components: (1) Measures of Greenness, (2) Energy-Efficient AI, (3) Energy-Efficient Computing Systems and (4) AI Use Cases for Sustainability. For each components, we discuss the research progress made and the commonly used techniques to optimize the AI efficiency. We conclude that this new research direction has the potential to address the conflicts between resource constraints and AI development. We encourage more researchers to put attention on this direction and make AI more environmental friendly. |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2885376304</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2885376304</sourcerecordid><originalsourceid>FETCH-proquest_journals_28853763043</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mQw9M9TKMlIVfAvKMgvKinNyyzJTC1WyE9TcC9KTc1TcM7PLSgtycxLt1JwVAguLSpLreRhYE1LzClO5YXS3AzKbq4hzh66BUX5haWpxSXxWfmlRXlAqXgjCwtTY3MzYwMTY-JUAQBp-jL6</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2885376304</pqid></control><display><type>article</type><title>On the Opportunities of Green Computing: A Survey</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Zhou, You ; Lin, Xiujing ; Zhang, Xiang ; Wang, Maolin ; Jiang, Gangwei ; Lu, Huakang ; Wu, Yupeng ; Zhang, Kai ; Yang, Zhe ; Wang, Kehang ; Yongduo Sui ; Jia, Fengwei ; Tang, Zuoli ; Zhao, Yao ; Zhang, Hongxuan ; Yang, Tiannuo ; Chen, Weibo ; Mao, Yunong ; Li, Yi ; Bao, De ; Li, Yu ; Liao, Hongrui ; Liu, Ting ; Liu, Jingwen ; Guo, Jinchi ; Zhao, Xiangyu ; WEI, Ying ; Qian, Hong ; Liu, Qi ; Wang, Xiang ; Kin, Wai ; Chan ; Li, Chenliang ; Li, Yusen ; Yang, Shiyu ; Yan, Jining ; Mou, Chao ; Han, Shuai ; Jin, Wuxia ; Zhang, Guannan ; Zeng, Xiaodong</creator><creatorcontrib>Zhou, You ; Lin, Xiujing ; Zhang, Xiang ; Wang, Maolin ; Jiang, Gangwei ; Lu, Huakang ; Wu, Yupeng ; Zhang, Kai ; Yang, Zhe ; Wang, Kehang ; Yongduo Sui ; Jia, Fengwei ; Tang, Zuoli ; Zhao, Yao ; Zhang, Hongxuan ; Yang, Tiannuo ; Chen, Weibo ; Mao, Yunong ; Li, Yi ; Bao, De ; Li, Yu ; Liao, Hongrui ; Liu, Ting ; Liu, Jingwen ; Guo, Jinchi ; Zhao, Xiangyu ; WEI, Ying ; Qian, Hong ; Liu, Qi ; Wang, Xiang ; Kin, Wai ; Chan ; Li, Chenliang ; Li, Yusen ; Yang, Shiyu ; Yan, Jining ; Mou, Chao ; Han, Shuai ; Jin, Wuxia ; Zhang, Guannan ; Zeng, Xiaodong</creatorcontrib><description>Artificial Intelligence (AI) has achieved significant advancements in technology and research with the development over several decades, and is widely used in many areas including computing vision, natural language processing, time-series analysis, speech synthesis, etc. During the age of deep learning, especially with the arise of Large Language Models, a large majority of researchers' attention is paid on pursuing new state-of-the-art (SOTA) results, resulting in ever increasing of model size and computational complexity. The needs for high computing power brings higher carbon emission and undermines research fairness by preventing small or medium-sized research institutions and companies with limited funding in participating in research. To tackle the challenges of computing resources and environmental impact of AI, Green Computing has become a hot research topic. In this survey, we give a systematic overview of the technologies used in Green Computing. We propose the framework of Green Computing and devide it into four key components: (1) Measures of Greenness, (2) Energy-Efficient AI, (3) Energy-Efficient Computing Systems and (4) AI Use Cases for Sustainability. For each components, we discuss the research progress made and the commonly used techniques to optimize the AI efficiency. We conclude that this new research direction has the potential to address the conflicts between resource constraints and AI development. We encourage more researchers to put attention on this direction and make AI more environmental friendly.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Artificial intelligence ; Emissions ; Environmental impact ; Large language models ; Machine learning ; Natural language processing ; Research facilities ; Speech recognition</subject><ispartof>arXiv.org, 2023-11</ispartof><rights>2023. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2885376304?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,37012,44590</link.rule.ids></links><search><creatorcontrib>Zhou, You</creatorcontrib><creatorcontrib>Lin, Xiujing</creatorcontrib><creatorcontrib>Zhang, Xiang</creatorcontrib><creatorcontrib>Wang, Maolin</creatorcontrib><creatorcontrib>Jiang, Gangwei</creatorcontrib><creatorcontrib>Lu, Huakang</creatorcontrib><creatorcontrib>Wu, Yupeng</creatorcontrib><creatorcontrib>Zhang, Kai</creatorcontrib><creatorcontrib>Yang, Zhe</creatorcontrib><creatorcontrib>Wang, Kehang</creatorcontrib><creatorcontrib>Yongduo Sui</creatorcontrib><creatorcontrib>Jia, Fengwei</creatorcontrib><creatorcontrib>Tang, Zuoli</creatorcontrib><creatorcontrib>Zhao, Yao</creatorcontrib><creatorcontrib>Zhang, Hongxuan</creatorcontrib><creatorcontrib>Yang, Tiannuo</creatorcontrib><creatorcontrib>Chen, Weibo</creatorcontrib><creatorcontrib>Mao, Yunong</creatorcontrib><creatorcontrib>Li, Yi</creatorcontrib><creatorcontrib>Bao, De</creatorcontrib><creatorcontrib>Li, Yu</creatorcontrib><creatorcontrib>Liao, Hongrui</creatorcontrib><creatorcontrib>Liu, Ting</creatorcontrib><creatorcontrib>Liu, Jingwen</creatorcontrib><creatorcontrib>Guo, Jinchi</creatorcontrib><creatorcontrib>Zhao, Xiangyu</creatorcontrib><creatorcontrib>WEI, Ying</creatorcontrib><creatorcontrib>Qian, Hong</creatorcontrib><creatorcontrib>Liu, Qi</creatorcontrib><creatorcontrib>Wang, Xiang</creatorcontrib><creatorcontrib>Kin, Wai</creatorcontrib><creatorcontrib>Chan</creatorcontrib><creatorcontrib>Li, Chenliang</creatorcontrib><creatorcontrib>Li, Yusen</creatorcontrib><creatorcontrib>Yang, Shiyu</creatorcontrib><creatorcontrib>Yan, Jining</creatorcontrib><creatorcontrib>Mou, Chao</creatorcontrib><creatorcontrib>Han, Shuai</creatorcontrib><creatorcontrib>Jin, Wuxia</creatorcontrib><creatorcontrib>Zhang, Guannan</creatorcontrib><creatorcontrib>Zeng, Xiaodong</creatorcontrib><title>On the Opportunities of Green Computing: A Survey</title><title>arXiv.org</title><description>Artificial Intelligence (AI) has achieved significant advancements in technology and research with the development over several decades, and is widely used in many areas including computing vision, natural language processing, time-series analysis, speech synthesis, etc. During the age of deep learning, especially with the arise of Large Language Models, a large majority of researchers' attention is paid on pursuing new state-of-the-art (SOTA) results, resulting in ever increasing of model size and computational complexity. The needs for high computing power brings higher carbon emission and undermines research fairness by preventing small or medium-sized research institutions and companies with limited funding in participating in research. To tackle the challenges of computing resources and environmental impact of AI, Green Computing has become a hot research topic. In this survey, we give a systematic overview of the technologies used in Green Computing. We propose the framework of Green Computing and devide it into four key components: (1) Measures of Greenness, (2) Energy-Efficient AI, (3) Energy-Efficient Computing Systems and (4) AI Use Cases for Sustainability. For each components, we discuss the research progress made and the commonly used techniques to optimize the AI efficiency. We conclude that this new research direction has the potential to address the conflicts between resource constraints and AI development. We encourage more researchers to put attention on this direction and make AI more environmental friendly.</description><subject>Artificial intelligence</subject><subject>Emissions</subject><subject>Environmental impact</subject><subject>Large language models</subject><subject>Machine learning</subject><subject>Natural language processing</subject><subject>Research facilities</subject><subject>Speech recognition</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mQw9M9TKMlIVfAvKMgvKinNyyzJTC1WyE9TcC9KTc1TcM7PLSgtycxLt1JwVAguLSpLreRhYE1LzClO5YXS3AzKbq4hzh66BUX5haWpxSXxWfmlRXlAqXgjCwtTY3MzYwMTY-JUAQBp-jL6</recordid><startdate>20231109</startdate><enddate>20231109</enddate><creator>Zhou, You</creator><creator>Lin, Xiujing</creator><creator>Zhang, Xiang</creator><creator>Wang, Maolin</creator><creator>Jiang, Gangwei</creator><creator>Lu, Huakang</creator><creator>Wu, Yupeng</creator><creator>Zhang, Kai</creator><creator>Yang, Zhe</creator><creator>Wang, Kehang</creator><creator>Yongduo Sui</creator><creator>Jia, Fengwei</creator><creator>Tang, Zuoli</creator><creator>Zhao, Yao</creator><creator>Zhang, Hongxuan</creator><creator>Yang, Tiannuo</creator><creator>Chen, Weibo</creator><creator>Mao, Yunong</creator><creator>Li, Yi</creator><creator>Bao, De</creator><creator>Li, Yu</creator><creator>Liao, Hongrui</creator><creator>Liu, Ting</creator><creator>Liu, Jingwen</creator><creator>Guo, Jinchi</creator><creator>Zhao, Xiangyu</creator><creator>WEI, Ying</creator><creator>Qian, Hong</creator><creator>Liu, Qi</creator><creator>Wang, Xiang</creator><creator>Kin, Wai</creator><creator>Chan</creator><creator>Li, Chenliang</creator><creator>Li, Yusen</creator><creator>Yang, Shiyu</creator><creator>Yan, Jining</creator><creator>Mou, Chao</creator><creator>Han, Shuai</creator><creator>Jin, Wuxia</creator><creator>Zhang, Guannan</creator><creator>Zeng, Xiaodong</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20231109</creationdate><title>On the Opportunities of Green Computing: A Survey</title><author>Zhou, You ; Lin, Xiujing ; Zhang, Xiang ; Wang, Maolin ; Jiang, Gangwei ; Lu, Huakang ; Wu, Yupeng ; Zhang, Kai ; Yang, Zhe ; Wang, Kehang ; Yongduo Sui ; Jia, Fengwei ; Tang, Zuoli ; Zhao, Yao ; Zhang, Hongxuan ; Yang, Tiannuo ; Chen, Weibo ; Mao, Yunong ; Li, Yi ; Bao, De ; Li, Yu ; Liao, Hongrui ; Liu, Ting ; Liu, Jingwen ; Guo, Jinchi ; Zhao, Xiangyu ; WEI, Ying ; Qian, Hong ; Liu, Qi ; Wang, Xiang ; Kin, Wai ; Chan ; Li, Chenliang ; Li, Yusen ; Yang, Shiyu ; Yan, Jining ; Mou, Chao ; Han, Shuai ; Jin, Wuxia ; Zhang, Guannan ; Zeng, Xiaodong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_28853763043</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Artificial intelligence</topic><topic>Emissions</topic><topic>Environmental impact</topic><topic>Large language models</topic><topic>Machine learning</topic><topic>Natural language processing</topic><topic>Research facilities</topic><topic>Speech recognition</topic><toplevel>online_resources</toplevel><creatorcontrib>Zhou, You</creatorcontrib><creatorcontrib>Lin, Xiujing</creatorcontrib><creatorcontrib>Zhang, Xiang</creatorcontrib><creatorcontrib>Wang, Maolin</creatorcontrib><creatorcontrib>Jiang, Gangwei</creatorcontrib><creatorcontrib>Lu, Huakang</creatorcontrib><creatorcontrib>Wu, Yupeng</creatorcontrib><creatorcontrib>Zhang, Kai</creatorcontrib><creatorcontrib>Yang, Zhe</creatorcontrib><creatorcontrib>Wang, Kehang</creatorcontrib><creatorcontrib>Yongduo Sui</creatorcontrib><creatorcontrib>Jia, Fengwei</creatorcontrib><creatorcontrib>Tang, Zuoli</creatorcontrib><creatorcontrib>Zhao, Yao</creatorcontrib><creatorcontrib>Zhang, Hongxuan</creatorcontrib><creatorcontrib>Yang, Tiannuo</creatorcontrib><creatorcontrib>Chen, Weibo</creatorcontrib><creatorcontrib>Mao, Yunong</creatorcontrib><creatorcontrib>Li, Yi</creatorcontrib><creatorcontrib>Bao, De</creatorcontrib><creatorcontrib>Li, Yu</creatorcontrib><creatorcontrib>Liao, Hongrui</creatorcontrib><creatorcontrib>Liu, Ting</creatorcontrib><creatorcontrib>Liu, Jingwen</creatorcontrib><creatorcontrib>Guo, Jinchi</creatorcontrib><creatorcontrib>Zhao, Xiangyu</creatorcontrib><creatorcontrib>WEI, Ying</creatorcontrib><creatorcontrib>Qian, Hong</creatorcontrib><creatorcontrib>Liu, Qi</creatorcontrib><creatorcontrib>Wang, Xiang</creatorcontrib><creatorcontrib>Kin, Wai</creatorcontrib><creatorcontrib>Chan</creatorcontrib><creatorcontrib>Li, Chenliang</creatorcontrib><creatorcontrib>Li, Yusen</creatorcontrib><creatorcontrib>Yang, Shiyu</creatorcontrib><creatorcontrib>Yan, Jining</creatorcontrib><creatorcontrib>Mou, Chao</creatorcontrib><creatorcontrib>Han, Shuai</creatorcontrib><creatorcontrib>Jin, Wuxia</creatorcontrib><creatorcontrib>Zhang, Guannan</creatorcontrib><creatorcontrib>Zeng, Xiaodong</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou, You</au><au>Lin, Xiujing</au><au>Zhang, Xiang</au><au>Wang, Maolin</au><au>Jiang, Gangwei</au><au>Lu, Huakang</au><au>Wu, Yupeng</au><au>Zhang, Kai</au><au>Yang, Zhe</au><au>Wang, Kehang</au><au>Yongduo Sui</au><au>Jia, Fengwei</au><au>Tang, Zuoli</au><au>Zhao, Yao</au><au>Zhang, Hongxuan</au><au>Yang, Tiannuo</au><au>Chen, Weibo</au><au>Mao, Yunong</au><au>Li, Yi</au><au>Bao, De</au><au>Li, Yu</au><au>Liao, Hongrui</au><au>Liu, Ting</au><au>Liu, Jingwen</au><au>Guo, Jinchi</au><au>Zhao, Xiangyu</au><au>WEI, Ying</au><au>Qian, Hong</au><au>Liu, Qi</au><au>Wang, Xiang</au><au>Kin, Wai</au><au>Chan</au><au>Li, Chenliang</au><au>Li, Yusen</au><au>Yang, Shiyu</au><au>Yan, Jining</au><au>Mou, Chao</au><au>Han, Shuai</au><au>Jin, Wuxia</au><au>Zhang, Guannan</au><au>Zeng, Xiaodong</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>On the Opportunities of Green Computing: A Survey</atitle><jtitle>arXiv.org</jtitle><date>2023-11-09</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>Artificial Intelligence (AI) has achieved significant advancements in technology and research with the development over several decades, and is widely used in many areas including computing vision, natural language processing, time-series analysis, speech synthesis, etc. During the age of deep learning, especially with the arise of Large Language Models, a large majority of researchers' attention is paid on pursuing new state-of-the-art (SOTA) results, resulting in ever increasing of model size and computational complexity. The needs for high computing power brings higher carbon emission and undermines research fairness by preventing small or medium-sized research institutions and companies with limited funding in participating in research. To tackle the challenges of computing resources and environmental impact of AI, Green Computing has become a hot research topic. In this survey, we give a systematic overview of the technologies used in Green Computing. We propose the framework of Green Computing and devide it into four key components: (1) Measures of Greenness, (2) Energy-Efficient AI, (3) Energy-Efficient Computing Systems and (4) AI Use Cases for Sustainability. For each components, we discuss the research progress made and the commonly used techniques to optimize the AI efficiency. We conclude that this new research direction has the potential to address the conflicts between resource constraints and AI development. We encourage more researchers to put attention on this direction and make AI more environmental friendly.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2023-11 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2885376304 |
source | Publicly Available Content Database (Proquest) (PQ_SDU_P3) |
subjects | Artificial intelligence Emissions Environmental impact Large language models Machine learning Natural language processing Research facilities Speech recognition |
title | On the Opportunities of Green Computing: A Survey |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T20%3A29%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=On%20the%20Opportunities%20of%20Green%20Computing:%20A%20Survey&rft.jtitle=arXiv.org&rft.au=Zhou,%20You&rft.date=2023-11-09&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2885376304%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_28853763043%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2885376304&rft_id=info:pmid/&rfr_iscdi=true |