Loading…

On the Opportunities of Green Computing: A Survey

Artificial Intelligence (AI) has achieved significant advancements in technology and research with the development over several decades, and is widely used in many areas including computing vision, natural language processing, time-series analysis, speech synthesis, etc. During the age of deep learn...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2023-11
Main Authors: Zhou, You, Lin, Xiujing, Zhang, Xiang, Wang, Maolin, Jiang, Gangwei, Lu, Huakang, Wu, Yupeng, Zhang, Kai, Yang, Zhe, Wang, Kehang, Yongduo Sui, Jia, Fengwei, Tang, Zuoli, Zhao, Yao, Zhang, Hongxuan, Yang, Tiannuo, Chen, Weibo, Mao, Yunong, Li, Yi, Bao, De, Li, Yu, Liao, Hongrui, Liu, Ting, Liu, Jingwen, Guo, Jinchi, Zhao, Xiangyu, WEI, Ying, Qian, Hong, Liu, Qi, Wang, Xiang, Kin, Wai, Chan, Li, Chenliang, Li, Yusen, Yang, Shiyu, Yan, Jining, Mou, Chao, Han, Shuai, Jin, Wuxia, Zhang, Guannan, Zeng, Xiaodong
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Zhou, You
Lin, Xiujing
Zhang, Xiang
Wang, Maolin
Jiang, Gangwei
Lu, Huakang
Wu, Yupeng
Zhang, Kai
Yang, Zhe
Wang, Kehang
Yongduo Sui
Jia, Fengwei
Tang, Zuoli
Zhao, Yao
Zhang, Hongxuan
Yang, Tiannuo
Chen, Weibo
Mao, Yunong
Li, Yi
Bao, De
Li, Yu
Liao, Hongrui
Liu, Ting
Liu, Jingwen
Guo, Jinchi
Zhao, Xiangyu
WEI, Ying
Qian, Hong
Liu, Qi
Wang, Xiang
Kin, Wai
Chan
Li, Chenliang
Li, Yusen
Yang, Shiyu
Yan, Jining
Mou, Chao
Han, Shuai
Jin, Wuxia
Zhang, Guannan
Zeng, Xiaodong
description Artificial Intelligence (AI) has achieved significant advancements in technology and research with the development over several decades, and is widely used in many areas including computing vision, natural language processing, time-series analysis, speech synthesis, etc. During the age of deep learning, especially with the arise of Large Language Models, a large majority of researchers' attention is paid on pursuing new state-of-the-art (SOTA) results, resulting in ever increasing of model size and computational complexity. The needs for high computing power brings higher carbon emission and undermines research fairness by preventing small or medium-sized research institutions and companies with limited funding in participating in research. To tackle the challenges of computing resources and environmental impact of AI, Green Computing has become a hot research topic. In this survey, we give a systematic overview of the technologies used in Green Computing. We propose the framework of Green Computing and devide it into four key components: (1) Measures of Greenness, (2) Energy-Efficient AI, (3) Energy-Efficient Computing Systems and (4) AI Use Cases for Sustainability. For each components, we discuss the research progress made and the commonly used techniques to optimize the AI efficiency. We conclude that this new research direction has the potential to address the conflicts between resource constraints and AI development. We encourage more researchers to put attention on this direction and make AI more environmental friendly.
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2885376304</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2885376304</sourcerecordid><originalsourceid>FETCH-proquest_journals_28853763043</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mQw9M9TKMlIVfAvKMgvKinNyyzJTC1WyE9TcC9KTc1TcM7PLSgtycxLt1JwVAguLSpLreRhYE1LzClO5YXS3AzKbq4hzh66BUX5haWpxSXxWfmlRXlAqXgjCwtTY3MzYwMTY-JUAQBp-jL6</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2885376304</pqid></control><display><type>article</type><title>On the Opportunities of Green Computing: A Survey</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Zhou, You ; Lin, Xiujing ; Zhang, Xiang ; Wang, Maolin ; Jiang, Gangwei ; Lu, Huakang ; Wu, Yupeng ; Zhang, Kai ; Yang, Zhe ; Wang, Kehang ; Yongduo Sui ; Jia, Fengwei ; Tang, Zuoli ; Zhao, Yao ; Zhang, Hongxuan ; Yang, Tiannuo ; Chen, Weibo ; Mao, Yunong ; Li, Yi ; Bao, De ; Li, Yu ; Liao, Hongrui ; Liu, Ting ; Liu, Jingwen ; Guo, Jinchi ; Zhao, Xiangyu ; WEI, Ying ; Qian, Hong ; Liu, Qi ; Wang, Xiang ; Kin, Wai ; Chan ; Li, Chenliang ; Li, Yusen ; Yang, Shiyu ; Yan, Jining ; Mou, Chao ; Han, Shuai ; Jin, Wuxia ; Zhang, Guannan ; Zeng, Xiaodong</creator><creatorcontrib>Zhou, You ; Lin, Xiujing ; Zhang, Xiang ; Wang, Maolin ; Jiang, Gangwei ; Lu, Huakang ; Wu, Yupeng ; Zhang, Kai ; Yang, Zhe ; Wang, Kehang ; Yongduo Sui ; Jia, Fengwei ; Tang, Zuoli ; Zhao, Yao ; Zhang, Hongxuan ; Yang, Tiannuo ; Chen, Weibo ; Mao, Yunong ; Li, Yi ; Bao, De ; Li, Yu ; Liao, Hongrui ; Liu, Ting ; Liu, Jingwen ; Guo, Jinchi ; Zhao, Xiangyu ; WEI, Ying ; Qian, Hong ; Liu, Qi ; Wang, Xiang ; Kin, Wai ; Chan ; Li, Chenliang ; Li, Yusen ; Yang, Shiyu ; Yan, Jining ; Mou, Chao ; Han, Shuai ; Jin, Wuxia ; Zhang, Guannan ; Zeng, Xiaodong</creatorcontrib><description>Artificial Intelligence (AI) has achieved significant advancements in technology and research with the development over several decades, and is widely used in many areas including computing vision, natural language processing, time-series analysis, speech synthesis, etc. During the age of deep learning, especially with the arise of Large Language Models, a large majority of researchers' attention is paid on pursuing new state-of-the-art (SOTA) results, resulting in ever increasing of model size and computational complexity. The needs for high computing power brings higher carbon emission and undermines research fairness by preventing small or medium-sized research institutions and companies with limited funding in participating in research. To tackle the challenges of computing resources and environmental impact of AI, Green Computing has become a hot research topic. In this survey, we give a systematic overview of the technologies used in Green Computing. We propose the framework of Green Computing and devide it into four key components: (1) Measures of Greenness, (2) Energy-Efficient AI, (3) Energy-Efficient Computing Systems and (4) AI Use Cases for Sustainability. For each components, we discuss the research progress made and the commonly used techniques to optimize the AI efficiency. We conclude that this new research direction has the potential to address the conflicts between resource constraints and AI development. We encourage more researchers to put attention on this direction and make AI more environmental friendly.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Artificial intelligence ; Emissions ; Environmental impact ; Large language models ; Machine learning ; Natural language processing ; Research facilities ; Speech recognition</subject><ispartof>arXiv.org, 2023-11</ispartof><rights>2023. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2885376304?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,37012,44590</link.rule.ids></links><search><creatorcontrib>Zhou, You</creatorcontrib><creatorcontrib>Lin, Xiujing</creatorcontrib><creatorcontrib>Zhang, Xiang</creatorcontrib><creatorcontrib>Wang, Maolin</creatorcontrib><creatorcontrib>Jiang, Gangwei</creatorcontrib><creatorcontrib>Lu, Huakang</creatorcontrib><creatorcontrib>Wu, Yupeng</creatorcontrib><creatorcontrib>Zhang, Kai</creatorcontrib><creatorcontrib>Yang, Zhe</creatorcontrib><creatorcontrib>Wang, Kehang</creatorcontrib><creatorcontrib>Yongduo Sui</creatorcontrib><creatorcontrib>Jia, Fengwei</creatorcontrib><creatorcontrib>Tang, Zuoli</creatorcontrib><creatorcontrib>Zhao, Yao</creatorcontrib><creatorcontrib>Zhang, Hongxuan</creatorcontrib><creatorcontrib>Yang, Tiannuo</creatorcontrib><creatorcontrib>Chen, Weibo</creatorcontrib><creatorcontrib>Mao, Yunong</creatorcontrib><creatorcontrib>Li, Yi</creatorcontrib><creatorcontrib>Bao, De</creatorcontrib><creatorcontrib>Li, Yu</creatorcontrib><creatorcontrib>Liao, Hongrui</creatorcontrib><creatorcontrib>Liu, Ting</creatorcontrib><creatorcontrib>Liu, Jingwen</creatorcontrib><creatorcontrib>Guo, Jinchi</creatorcontrib><creatorcontrib>Zhao, Xiangyu</creatorcontrib><creatorcontrib>WEI, Ying</creatorcontrib><creatorcontrib>Qian, Hong</creatorcontrib><creatorcontrib>Liu, Qi</creatorcontrib><creatorcontrib>Wang, Xiang</creatorcontrib><creatorcontrib>Kin, Wai</creatorcontrib><creatorcontrib>Chan</creatorcontrib><creatorcontrib>Li, Chenliang</creatorcontrib><creatorcontrib>Li, Yusen</creatorcontrib><creatorcontrib>Yang, Shiyu</creatorcontrib><creatorcontrib>Yan, Jining</creatorcontrib><creatorcontrib>Mou, Chao</creatorcontrib><creatorcontrib>Han, Shuai</creatorcontrib><creatorcontrib>Jin, Wuxia</creatorcontrib><creatorcontrib>Zhang, Guannan</creatorcontrib><creatorcontrib>Zeng, Xiaodong</creatorcontrib><title>On the Opportunities of Green Computing: A Survey</title><title>arXiv.org</title><description>Artificial Intelligence (AI) has achieved significant advancements in technology and research with the development over several decades, and is widely used in many areas including computing vision, natural language processing, time-series analysis, speech synthesis, etc. During the age of deep learning, especially with the arise of Large Language Models, a large majority of researchers' attention is paid on pursuing new state-of-the-art (SOTA) results, resulting in ever increasing of model size and computational complexity. The needs for high computing power brings higher carbon emission and undermines research fairness by preventing small or medium-sized research institutions and companies with limited funding in participating in research. To tackle the challenges of computing resources and environmental impact of AI, Green Computing has become a hot research topic. In this survey, we give a systematic overview of the technologies used in Green Computing. We propose the framework of Green Computing and devide it into four key components: (1) Measures of Greenness, (2) Energy-Efficient AI, (3) Energy-Efficient Computing Systems and (4) AI Use Cases for Sustainability. For each components, we discuss the research progress made and the commonly used techniques to optimize the AI efficiency. We conclude that this new research direction has the potential to address the conflicts between resource constraints and AI development. We encourage more researchers to put attention on this direction and make AI more environmental friendly.</description><subject>Artificial intelligence</subject><subject>Emissions</subject><subject>Environmental impact</subject><subject>Large language models</subject><subject>Machine learning</subject><subject>Natural language processing</subject><subject>Research facilities</subject><subject>Speech recognition</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mQw9M9TKMlIVfAvKMgvKinNyyzJTC1WyE9TcC9KTc1TcM7PLSgtycxLt1JwVAguLSpLreRhYE1LzClO5YXS3AzKbq4hzh66BUX5haWpxSXxWfmlRXlAqXgjCwtTY3MzYwMTY-JUAQBp-jL6</recordid><startdate>20231109</startdate><enddate>20231109</enddate><creator>Zhou, You</creator><creator>Lin, Xiujing</creator><creator>Zhang, Xiang</creator><creator>Wang, Maolin</creator><creator>Jiang, Gangwei</creator><creator>Lu, Huakang</creator><creator>Wu, Yupeng</creator><creator>Zhang, Kai</creator><creator>Yang, Zhe</creator><creator>Wang, Kehang</creator><creator>Yongduo Sui</creator><creator>Jia, Fengwei</creator><creator>Tang, Zuoli</creator><creator>Zhao, Yao</creator><creator>Zhang, Hongxuan</creator><creator>Yang, Tiannuo</creator><creator>Chen, Weibo</creator><creator>Mao, Yunong</creator><creator>Li, Yi</creator><creator>Bao, De</creator><creator>Li, Yu</creator><creator>Liao, Hongrui</creator><creator>Liu, Ting</creator><creator>Liu, Jingwen</creator><creator>Guo, Jinchi</creator><creator>Zhao, Xiangyu</creator><creator>WEI, Ying</creator><creator>Qian, Hong</creator><creator>Liu, Qi</creator><creator>Wang, Xiang</creator><creator>Kin, Wai</creator><creator>Chan</creator><creator>Li, Chenliang</creator><creator>Li, Yusen</creator><creator>Yang, Shiyu</creator><creator>Yan, Jining</creator><creator>Mou, Chao</creator><creator>Han, Shuai</creator><creator>Jin, Wuxia</creator><creator>Zhang, Guannan</creator><creator>Zeng, Xiaodong</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20231109</creationdate><title>On the Opportunities of Green Computing: A Survey</title><author>Zhou, You ; Lin, Xiujing ; Zhang, Xiang ; Wang, Maolin ; Jiang, Gangwei ; Lu, Huakang ; Wu, Yupeng ; Zhang, Kai ; Yang, Zhe ; Wang, Kehang ; Yongduo Sui ; Jia, Fengwei ; Tang, Zuoli ; Zhao, Yao ; Zhang, Hongxuan ; Yang, Tiannuo ; Chen, Weibo ; Mao, Yunong ; Li, Yi ; Bao, De ; Li, Yu ; Liao, Hongrui ; Liu, Ting ; Liu, Jingwen ; Guo, Jinchi ; Zhao, Xiangyu ; WEI, Ying ; Qian, Hong ; Liu, Qi ; Wang, Xiang ; Kin, Wai ; Chan ; Li, Chenliang ; Li, Yusen ; Yang, Shiyu ; Yan, Jining ; Mou, Chao ; Han, Shuai ; Jin, Wuxia ; Zhang, Guannan ; Zeng, Xiaodong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_28853763043</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Artificial intelligence</topic><topic>Emissions</topic><topic>Environmental impact</topic><topic>Large language models</topic><topic>Machine learning</topic><topic>Natural language processing</topic><topic>Research facilities</topic><topic>Speech recognition</topic><toplevel>online_resources</toplevel><creatorcontrib>Zhou, You</creatorcontrib><creatorcontrib>Lin, Xiujing</creatorcontrib><creatorcontrib>Zhang, Xiang</creatorcontrib><creatorcontrib>Wang, Maolin</creatorcontrib><creatorcontrib>Jiang, Gangwei</creatorcontrib><creatorcontrib>Lu, Huakang</creatorcontrib><creatorcontrib>Wu, Yupeng</creatorcontrib><creatorcontrib>Zhang, Kai</creatorcontrib><creatorcontrib>Yang, Zhe</creatorcontrib><creatorcontrib>Wang, Kehang</creatorcontrib><creatorcontrib>Yongduo Sui</creatorcontrib><creatorcontrib>Jia, Fengwei</creatorcontrib><creatorcontrib>Tang, Zuoli</creatorcontrib><creatorcontrib>Zhao, Yao</creatorcontrib><creatorcontrib>Zhang, Hongxuan</creatorcontrib><creatorcontrib>Yang, Tiannuo</creatorcontrib><creatorcontrib>Chen, Weibo</creatorcontrib><creatorcontrib>Mao, Yunong</creatorcontrib><creatorcontrib>Li, Yi</creatorcontrib><creatorcontrib>Bao, De</creatorcontrib><creatorcontrib>Li, Yu</creatorcontrib><creatorcontrib>Liao, Hongrui</creatorcontrib><creatorcontrib>Liu, Ting</creatorcontrib><creatorcontrib>Liu, Jingwen</creatorcontrib><creatorcontrib>Guo, Jinchi</creatorcontrib><creatorcontrib>Zhao, Xiangyu</creatorcontrib><creatorcontrib>WEI, Ying</creatorcontrib><creatorcontrib>Qian, Hong</creatorcontrib><creatorcontrib>Liu, Qi</creatorcontrib><creatorcontrib>Wang, Xiang</creatorcontrib><creatorcontrib>Kin, Wai</creatorcontrib><creatorcontrib>Chan</creatorcontrib><creatorcontrib>Li, Chenliang</creatorcontrib><creatorcontrib>Li, Yusen</creatorcontrib><creatorcontrib>Yang, Shiyu</creatorcontrib><creatorcontrib>Yan, Jining</creatorcontrib><creatorcontrib>Mou, Chao</creatorcontrib><creatorcontrib>Han, Shuai</creatorcontrib><creatorcontrib>Jin, Wuxia</creatorcontrib><creatorcontrib>Zhang, Guannan</creatorcontrib><creatorcontrib>Zeng, Xiaodong</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou, You</au><au>Lin, Xiujing</au><au>Zhang, Xiang</au><au>Wang, Maolin</au><au>Jiang, Gangwei</au><au>Lu, Huakang</au><au>Wu, Yupeng</au><au>Zhang, Kai</au><au>Yang, Zhe</au><au>Wang, Kehang</au><au>Yongduo Sui</au><au>Jia, Fengwei</au><au>Tang, Zuoli</au><au>Zhao, Yao</au><au>Zhang, Hongxuan</au><au>Yang, Tiannuo</au><au>Chen, Weibo</au><au>Mao, Yunong</au><au>Li, Yi</au><au>Bao, De</au><au>Li, Yu</au><au>Liao, Hongrui</au><au>Liu, Ting</au><au>Liu, Jingwen</au><au>Guo, Jinchi</au><au>Zhao, Xiangyu</au><au>WEI, Ying</au><au>Qian, Hong</au><au>Liu, Qi</au><au>Wang, Xiang</au><au>Kin, Wai</au><au>Chan</au><au>Li, Chenliang</au><au>Li, Yusen</au><au>Yang, Shiyu</au><au>Yan, Jining</au><au>Mou, Chao</au><au>Han, Shuai</au><au>Jin, Wuxia</au><au>Zhang, Guannan</au><au>Zeng, Xiaodong</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>On the Opportunities of Green Computing: A Survey</atitle><jtitle>arXiv.org</jtitle><date>2023-11-09</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>Artificial Intelligence (AI) has achieved significant advancements in technology and research with the development over several decades, and is widely used in many areas including computing vision, natural language processing, time-series analysis, speech synthesis, etc. During the age of deep learning, especially with the arise of Large Language Models, a large majority of researchers' attention is paid on pursuing new state-of-the-art (SOTA) results, resulting in ever increasing of model size and computational complexity. The needs for high computing power brings higher carbon emission and undermines research fairness by preventing small or medium-sized research institutions and companies with limited funding in participating in research. To tackle the challenges of computing resources and environmental impact of AI, Green Computing has become a hot research topic. In this survey, we give a systematic overview of the technologies used in Green Computing. We propose the framework of Green Computing and devide it into four key components: (1) Measures of Greenness, (2) Energy-Efficient AI, (3) Energy-Efficient Computing Systems and (4) AI Use Cases for Sustainability. For each components, we discuss the research progress made and the commonly used techniques to optimize the AI efficiency. We conclude that this new research direction has the potential to address the conflicts between resource constraints and AI development. We encourage more researchers to put attention on this direction and make AI more environmental friendly.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2023-11
issn 2331-8422
language eng
recordid cdi_proquest_journals_2885376304
source Publicly Available Content Database (Proquest) (PQ_SDU_P3)
subjects Artificial intelligence
Emissions
Environmental impact
Large language models
Machine learning
Natural language processing
Research facilities
Speech recognition
title On the Opportunities of Green Computing: A Survey
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T20%3A29%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=On%20the%20Opportunities%20of%20Green%20Computing:%20A%20Survey&rft.jtitle=arXiv.org&rft.au=Zhou,%20You&rft.date=2023-11-09&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2885376304%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_28853763043%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2885376304&rft_id=info:pmid/&rfr_iscdi=true