Loading…

Provably Convergent Data-Driven Convex-Nonconvex Regularization

An emerging new paradigm for solving inverse problems is via the use of deep learning to learn a regularizer from data. This leads to high-quality results, but often at the cost of provable guarantees. In this work, we show how well-posedness and convergent regularization arises within the convex-no...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2023-11
Main Authors: Shumaylov, Zakhar, Budd, Jeremy, Mukherjee, Subhadip, Schönlieb, Carola-Bibiane
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Shumaylov, Zakhar
Budd, Jeremy
Mukherjee, Subhadip
Schönlieb, Carola-Bibiane
description An emerging new paradigm for solving inverse problems is via the use of deep learning to learn a regularizer from data. This leads to high-quality results, but often at the cost of provable guarantees. In this work, we show how well-posedness and convergent regularization arises within the convex-nonconvex (CNC) framework for inverse problems. We introduce a novel input weakly convex neural network (IWCNN) construction to adapt the method of learned adversarial regularization to the CNC framework. Empirically we show that our method overcomes numerical issues of previous adversarial methods.
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2886460564</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2886460564</sourcerecordid><originalsourceid>FETCH-proquest_journals_28864605643</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSwDyjKL0tMyqlUcM7PK0stSk_NK1FwSSxJ1HUpyixLzYMIV-j65eclg1kKQanppTmJRZlViSWZ-Xk8DKxpiTnFqbxQmptB2c01xNlDt6Aov7A0tbgkPiu_tCgPKBVvZGFhZmJmYGpmYkycKgA2RTlN</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2886460564</pqid></control><display><type>article</type><title>Provably Convergent Data-Driven Convex-Nonconvex Regularization</title><source>Publicly Available Content Database</source><creator>Shumaylov, Zakhar ; Budd, Jeremy ; Mukherjee, Subhadip ; Schönlieb, Carola-Bibiane</creator><creatorcontrib>Shumaylov, Zakhar ; Budd, Jeremy ; Mukherjee, Subhadip ; Schönlieb, Carola-Bibiane</creatorcontrib><description>An emerging new paradigm for solving inverse problems is via the use of deep learning to learn a regularizer from data. This leads to high-quality results, but often at the cost of provable guarantees. In this work, we show how well-posedness and convergent regularization arises within the convex-nonconvex (CNC) framework for inverse problems. We introduce a novel input weakly convex neural network (IWCNN) construction to adapt the method of learned adversarial regularization to the CNC framework. Empirically we show that our method overcomes numerical issues of previous adversarial methods.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Convergence ; Inverse problems ; Neural networks ; Regularization</subject><ispartof>arXiv.org, 2023-11</ispartof><rights>2023. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2886460564?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,37012,44590</link.rule.ids></links><search><creatorcontrib>Shumaylov, Zakhar</creatorcontrib><creatorcontrib>Budd, Jeremy</creatorcontrib><creatorcontrib>Mukherjee, Subhadip</creatorcontrib><creatorcontrib>Schönlieb, Carola-Bibiane</creatorcontrib><title>Provably Convergent Data-Driven Convex-Nonconvex Regularization</title><title>arXiv.org</title><description>An emerging new paradigm for solving inverse problems is via the use of deep learning to learn a regularizer from data. This leads to high-quality results, but often at the cost of provable guarantees. In this work, we show how well-posedness and convergent regularization arises within the convex-nonconvex (CNC) framework for inverse problems. We introduce a novel input weakly convex neural network (IWCNN) construction to adapt the method of learned adversarial regularization to the CNC framework. Empirically we show that our method overcomes numerical issues of previous adversarial methods.</description><subject>Convergence</subject><subject>Inverse problems</subject><subject>Neural networks</subject><subject>Regularization</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSwDyjKL0tMyqlUcM7PK0stSk_NK1FwSSxJ1HUpyixLzYMIV-j65eclg1kKQanppTmJRZlViSWZ-Xk8DKxpiTnFqbxQmptB2c01xNlDt6Aov7A0tbgkPiu_tCgPKBVvZGFhZmJmYGpmYkycKgA2RTlN</recordid><startdate>20231102</startdate><enddate>20231102</enddate><creator>Shumaylov, Zakhar</creator><creator>Budd, Jeremy</creator><creator>Mukherjee, Subhadip</creator><creator>Schönlieb, Carola-Bibiane</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20231102</creationdate><title>Provably Convergent Data-Driven Convex-Nonconvex Regularization</title><author>Shumaylov, Zakhar ; Budd, Jeremy ; Mukherjee, Subhadip ; Schönlieb, Carola-Bibiane</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_28864605643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Convergence</topic><topic>Inverse problems</topic><topic>Neural networks</topic><topic>Regularization</topic><toplevel>online_resources</toplevel><creatorcontrib>Shumaylov, Zakhar</creatorcontrib><creatorcontrib>Budd, Jeremy</creatorcontrib><creatorcontrib>Mukherjee, Subhadip</creatorcontrib><creatorcontrib>Schönlieb, Carola-Bibiane</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shumaylov, Zakhar</au><au>Budd, Jeremy</au><au>Mukherjee, Subhadip</au><au>Schönlieb, Carola-Bibiane</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Provably Convergent Data-Driven Convex-Nonconvex Regularization</atitle><jtitle>arXiv.org</jtitle><date>2023-11-02</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>An emerging new paradigm for solving inverse problems is via the use of deep learning to learn a regularizer from data. This leads to high-quality results, but often at the cost of provable guarantees. In this work, we show how well-posedness and convergent regularization arises within the convex-nonconvex (CNC) framework for inverse problems. We introduce a novel input weakly convex neural network (IWCNN) construction to adapt the method of learned adversarial regularization to the CNC framework. Empirically we show that our method overcomes numerical issues of previous adversarial methods.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2023-11
issn 2331-8422
language eng
recordid cdi_proquest_journals_2886460564
source Publicly Available Content Database
subjects Convergence
Inverse problems
Neural networks
Regularization
title Provably Convergent Data-Driven Convex-Nonconvex Regularization
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T20%3A47%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Provably%20Convergent%20Data-Driven%20Convex-Nonconvex%20Regularization&rft.jtitle=arXiv.org&rft.au=Shumaylov,%20Zakhar&rft.date=2023-11-02&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2886460564%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_28864605643%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2886460564&rft_id=info:pmid/&rfr_iscdi=true