Loading…
Provably Convergent Data-Driven Convex-Nonconvex Regularization
An emerging new paradigm for solving inverse problems is via the use of deep learning to learn a regularizer from data. This leads to high-quality results, but often at the cost of provable guarantees. In this work, we show how well-posedness and convergent regularization arises within the convex-no...
Saved in:
Published in: | arXiv.org 2023-11 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Shumaylov, Zakhar Budd, Jeremy Mukherjee, Subhadip Schönlieb, Carola-Bibiane |
description | An emerging new paradigm for solving inverse problems is via the use of deep learning to learn a regularizer from data. This leads to high-quality results, but often at the cost of provable guarantees. In this work, we show how well-posedness and convergent regularization arises within the convex-nonconvex (CNC) framework for inverse problems. We introduce a novel input weakly convex neural network (IWCNN) construction to adapt the method of learned adversarial regularization to the CNC framework. Empirically we show that our method overcomes numerical issues of previous adversarial methods. |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2886460564</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2886460564</sourcerecordid><originalsourceid>FETCH-proquest_journals_28864605643</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSwDyjKL0tMyqlUcM7PK0stSk_NK1FwSSxJ1HUpyixLzYMIV-j65eclg1kKQanppTmJRZlViSWZ-Xk8DKxpiTnFqbxQmptB2c01xNlDt6Aov7A0tbgkPiu_tCgPKBVvZGFhZmJmYGpmYkycKgA2RTlN</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2886460564</pqid></control><display><type>article</type><title>Provably Convergent Data-Driven Convex-Nonconvex Regularization</title><source>Publicly Available Content Database</source><creator>Shumaylov, Zakhar ; Budd, Jeremy ; Mukherjee, Subhadip ; Schönlieb, Carola-Bibiane</creator><creatorcontrib>Shumaylov, Zakhar ; Budd, Jeremy ; Mukherjee, Subhadip ; Schönlieb, Carola-Bibiane</creatorcontrib><description>An emerging new paradigm for solving inverse problems is via the use of deep learning to learn a regularizer from data. This leads to high-quality results, but often at the cost of provable guarantees. In this work, we show how well-posedness and convergent regularization arises within the convex-nonconvex (CNC) framework for inverse problems. We introduce a novel input weakly convex neural network (IWCNN) construction to adapt the method of learned adversarial regularization to the CNC framework. Empirically we show that our method overcomes numerical issues of previous adversarial methods.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Convergence ; Inverse problems ; Neural networks ; Regularization</subject><ispartof>arXiv.org, 2023-11</ispartof><rights>2023. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2886460564?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,37012,44590</link.rule.ids></links><search><creatorcontrib>Shumaylov, Zakhar</creatorcontrib><creatorcontrib>Budd, Jeremy</creatorcontrib><creatorcontrib>Mukherjee, Subhadip</creatorcontrib><creatorcontrib>Schönlieb, Carola-Bibiane</creatorcontrib><title>Provably Convergent Data-Driven Convex-Nonconvex Regularization</title><title>arXiv.org</title><description>An emerging new paradigm for solving inverse problems is via the use of deep learning to learn a regularizer from data. This leads to high-quality results, but often at the cost of provable guarantees. In this work, we show how well-posedness and convergent regularization arises within the convex-nonconvex (CNC) framework for inverse problems. We introduce a novel input weakly convex neural network (IWCNN) construction to adapt the method of learned adversarial regularization to the CNC framework. Empirically we show that our method overcomes numerical issues of previous adversarial methods.</description><subject>Convergence</subject><subject>Inverse problems</subject><subject>Neural networks</subject><subject>Regularization</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSwDyjKL0tMyqlUcM7PK0stSk_NK1FwSSxJ1HUpyixLzYMIV-j65eclg1kKQanppTmJRZlViSWZ-Xk8DKxpiTnFqbxQmptB2c01xNlDt6Aov7A0tbgkPiu_tCgPKBVvZGFhZmJmYGpmYkycKgA2RTlN</recordid><startdate>20231102</startdate><enddate>20231102</enddate><creator>Shumaylov, Zakhar</creator><creator>Budd, Jeremy</creator><creator>Mukherjee, Subhadip</creator><creator>Schönlieb, Carola-Bibiane</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20231102</creationdate><title>Provably Convergent Data-Driven Convex-Nonconvex Regularization</title><author>Shumaylov, Zakhar ; Budd, Jeremy ; Mukherjee, Subhadip ; Schönlieb, Carola-Bibiane</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_28864605643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Convergence</topic><topic>Inverse problems</topic><topic>Neural networks</topic><topic>Regularization</topic><toplevel>online_resources</toplevel><creatorcontrib>Shumaylov, Zakhar</creatorcontrib><creatorcontrib>Budd, Jeremy</creatorcontrib><creatorcontrib>Mukherjee, Subhadip</creatorcontrib><creatorcontrib>Schönlieb, Carola-Bibiane</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shumaylov, Zakhar</au><au>Budd, Jeremy</au><au>Mukherjee, Subhadip</au><au>Schönlieb, Carola-Bibiane</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Provably Convergent Data-Driven Convex-Nonconvex Regularization</atitle><jtitle>arXiv.org</jtitle><date>2023-11-02</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>An emerging new paradigm for solving inverse problems is via the use of deep learning to learn a regularizer from data. This leads to high-quality results, but often at the cost of provable guarantees. In this work, we show how well-posedness and convergent regularization arises within the convex-nonconvex (CNC) framework for inverse problems. We introduce a novel input weakly convex neural network (IWCNN) construction to adapt the method of learned adversarial regularization to the CNC framework. Empirically we show that our method overcomes numerical issues of previous adversarial methods.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2023-11 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2886460564 |
source | Publicly Available Content Database |
subjects | Convergence Inverse problems Neural networks Regularization |
title | Provably Convergent Data-Driven Convex-Nonconvex Regularization |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T20%3A47%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Provably%20Convergent%20Data-Driven%20Convex-Nonconvex%20Regularization&rft.jtitle=arXiv.org&rft.au=Shumaylov,%20Zakhar&rft.date=2023-11-02&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2886460564%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_28864605643%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2886460564&rft_id=info:pmid/&rfr_iscdi=true |