Loading…

Improving Low‐temperature Performance and Stability of Na2Ti6O13 Anodes by the Ti−O Spring Effect through Nb‐doping

Na2Ti6O13 (NTO) with high safety has been regarded as a promising anode candidate for sodium‐ion batteries. In the present study, integrated modification of migration channels broadening, charge density re‐distribution, and oxygen vacancies regulation are realized in case of Nb‐doping and have obtai...

Full description

Saved in:
Bibliographic Details
Published in:Angewandte Chemie International Edition 2023-11, Vol.62 (46), p.n/a
Main Authors: Hu, ChangYan, Li, Ying, Wang, Dong, Wu, Chunjin, Chen, Feng, Zhang, Linghong, Wan, Fang, Hua, Weibo, Sun, Yan, Zhong, Benhe, Wu, Zhenguo, Guo, Xiaodong
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page n/a
container_issue 46
container_start_page
container_title Angewandte Chemie International Edition
container_volume 62
creator Hu, ChangYan
Li, Ying
Wang, Dong
Wu, Chunjin
Chen, Feng
Zhang, Linghong
Wan, Fang
Hua, Weibo
Sun, Yan
Zhong, Benhe
Wu, Zhenguo
Guo, Xiaodong
description Na2Ti6O13 (NTO) with high safety has been regarded as a promising anode candidate for sodium‐ion batteries. In the present study, integrated modification of migration channels broadening, charge density re‐distribution, and oxygen vacancies regulation are realized in case of Nb‐doping and have obtained significantly enhanced cycling performance with 92 % reversible capacity retained after 3000 cycles at 3000 mA g−1. Moreover, unexpected low‐temperature performance with a high discharge capacity of 143 mAh g−1 at 100 mA g−1 under −15 °C is also achieved in the full cell. Theoretical investigation suggests that Nb preferentially replaces Ti3 sites, which effectively improves structural stability and lowers the diffusion energy barrier. What's more important, both the in situ X‐ray diffraction (XRD) and in situ Raman furtherly confirm the robust spring effect of the Ti−O bond, making special charge compensation mechanism and respective regulation strategy to conquer the sluggish transport kinetics and low conductivity, which plays a key role in promoting electrochemical performance. Integrated effects of migration channels broadening, charge density re‐distribution, and oxygen vacancies modulation are achieved via high valence state ion‐doping in case of Nb5+. The modified samples optimized excellent long‐cycle stability, and superior low‐temperature performance in the full cell. Importantly, it is demonstrated for the first time that high‐valent transition metal preferentially replaces the Ti3 site of NTO, effectively improving electrical conductivity and ion diffusion rate. More interestingly, the “spring effect” of chemical bonding, which is twisted‐recovered‐twisted with the motion of Na+, is investigated for the first time by in situ Raman, and the stabilizing effect of Nb enables the more regular and reversible “spring effect”.
doi_str_mv 10.1002/anie.202312310
format article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_2886462447</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2886462447</sourcerecordid><originalsourceid>FETCH-LOGICAL-p2330-54a6a9cf623c68f6c6d394047df3f43080b0ef2308505529f964cffb70d5efb43</originalsourceid><addsrcrecordid>eNo9UE1Lw0AQXUTBWr16XvCcul_ZJMdSqhZKK7Sel02y225psnGzUXLz6FH8if0lbqkUBmaG93hv5gFwj9EII0QeZW3UiCBCcSh0AQY4JjiiSUIvw8wojZI0xtfgpm13gZ-miA9AP6saZz9MvYFz-3n4-vGqapSTvnMKviqnratkXSgo6xKuvMzN3vgeWg0XkqwNX2IKx7UtVQvzHvqtgmtz-P5dwlXjjqJTrVXhA-Bst9nCRR4sStsE6BZcablv1d1_H4K3p-l68hLNl8-zyXgeNYRSFMVMcpkVmhNa8FTzgpc0Y4glpaaaUZSiHClNwhCjOCaZzjgrtM4TVMZK54wOwcNJN_z53qnWi53tXB0sRciAM04YSwIrO7E-zV71IhxfSdcLjMQxW3HMVpyzFePFbHre6B9CmnJf</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2886462447</pqid></control><display><type>article</type><title>Improving Low‐temperature Performance and Stability of Na2Ti6O13 Anodes by the Ti−O Spring Effect through Nb‐doping</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Hu, ChangYan ; Li, Ying ; Wang, Dong ; Wu, Chunjin ; Chen, Feng ; Zhang, Linghong ; Wan, Fang ; Hua, Weibo ; Sun, Yan ; Zhong, Benhe ; Wu, Zhenguo ; Guo, Xiaodong</creator><creatorcontrib>Hu, ChangYan ; Li, Ying ; Wang, Dong ; Wu, Chunjin ; Chen, Feng ; Zhang, Linghong ; Wan, Fang ; Hua, Weibo ; Sun, Yan ; Zhong, Benhe ; Wu, Zhenguo ; Guo, Xiaodong</creatorcontrib><description>Na2Ti6O13 (NTO) with high safety has been regarded as a promising anode candidate for sodium‐ion batteries. In the present study, integrated modification of migration channels broadening, charge density re‐distribution, and oxygen vacancies regulation are realized in case of Nb‐doping and have obtained significantly enhanced cycling performance with 92 % reversible capacity retained after 3000 cycles at 3000 mA g−1. Moreover, unexpected low‐temperature performance with a high discharge capacity of 143 mAh g−1 at 100 mA g−1 under −15 °C is also achieved in the full cell. Theoretical investigation suggests that Nb preferentially replaces Ti3 sites, which effectively improves structural stability and lowers the diffusion energy barrier. What's more important, both the in situ X‐ray diffraction (XRD) and in situ Raman furtherly confirm the robust spring effect of the Ti−O bond, making special charge compensation mechanism and respective regulation strategy to conquer the sluggish transport kinetics and low conductivity, which plays a key role in promoting electrochemical performance. Integrated effects of migration channels broadening, charge density re‐distribution, and oxygen vacancies modulation are achieved via high valence state ion‐doping in case of Nb5+. The modified samples optimized excellent long‐cycle stability, and superior low‐temperature performance in the full cell. Importantly, it is demonstrated for the first time that high‐valent transition metal preferentially replaces the Ti3 site of NTO, effectively improving electrical conductivity and ion diffusion rate. More interestingly, the “spring effect” of chemical bonding, which is twisted‐recovered‐twisted with the motion of Na+, is investigated for the first time by in situ Raman, and the stabilizing effect of Nb enables the more regular and reversible “spring effect”.</description><edition>International ed. in English</edition><identifier>ISSN: 1433-7851</identifier><identifier>EISSN: 1521-3773</identifier><identifier>DOI: 10.1002/anie.202312310</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Anodes ; Charge density ; Diffusion barriers ; Discharge capacity ; Doping ; Electrochemical analysis ; Electrochemistry ; Low conductivity ; Low-Temperature ; Na2Ti6O13 Anode ; Nb-Doping ; Robust Spring Effect ; Sodium-ion batteries ; Structural stability</subject><ispartof>Angewandte Chemie International Edition, 2023-11, Vol.62 (46), p.n/a</ispartof><rights>2023 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-8153-2169 ; 0000-0003-2180-1985</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Hu, ChangYan</creatorcontrib><creatorcontrib>Li, Ying</creatorcontrib><creatorcontrib>Wang, Dong</creatorcontrib><creatorcontrib>Wu, Chunjin</creatorcontrib><creatorcontrib>Chen, Feng</creatorcontrib><creatorcontrib>Zhang, Linghong</creatorcontrib><creatorcontrib>Wan, Fang</creatorcontrib><creatorcontrib>Hua, Weibo</creatorcontrib><creatorcontrib>Sun, Yan</creatorcontrib><creatorcontrib>Zhong, Benhe</creatorcontrib><creatorcontrib>Wu, Zhenguo</creatorcontrib><creatorcontrib>Guo, Xiaodong</creatorcontrib><title>Improving Low‐temperature Performance and Stability of Na2Ti6O13 Anodes by the Ti−O Spring Effect through Nb‐doping</title><title>Angewandte Chemie International Edition</title><description>Na2Ti6O13 (NTO) with high safety has been regarded as a promising anode candidate for sodium‐ion batteries. In the present study, integrated modification of migration channels broadening, charge density re‐distribution, and oxygen vacancies regulation are realized in case of Nb‐doping and have obtained significantly enhanced cycling performance with 92 % reversible capacity retained after 3000 cycles at 3000 mA g−1. Moreover, unexpected low‐temperature performance with a high discharge capacity of 143 mAh g−1 at 100 mA g−1 under −15 °C is also achieved in the full cell. Theoretical investigation suggests that Nb preferentially replaces Ti3 sites, which effectively improves structural stability and lowers the diffusion energy barrier. What's more important, both the in situ X‐ray diffraction (XRD) and in situ Raman furtherly confirm the robust spring effect of the Ti−O bond, making special charge compensation mechanism and respective regulation strategy to conquer the sluggish transport kinetics and low conductivity, which plays a key role in promoting electrochemical performance. Integrated effects of migration channels broadening, charge density re‐distribution, and oxygen vacancies modulation are achieved via high valence state ion‐doping in case of Nb5+. The modified samples optimized excellent long‐cycle stability, and superior low‐temperature performance in the full cell. Importantly, it is demonstrated for the first time that high‐valent transition metal preferentially replaces the Ti3 site of NTO, effectively improving electrical conductivity and ion diffusion rate. More interestingly, the “spring effect” of chemical bonding, which is twisted‐recovered‐twisted with the motion of Na+, is investigated for the first time by in situ Raman, and the stabilizing effect of Nb enables the more regular and reversible “spring effect”.</description><subject>Anodes</subject><subject>Charge density</subject><subject>Diffusion barriers</subject><subject>Discharge capacity</subject><subject>Doping</subject><subject>Electrochemical analysis</subject><subject>Electrochemistry</subject><subject>Low conductivity</subject><subject>Low-Temperature</subject><subject>Na2Ti6O13 Anode</subject><subject>Nb-Doping</subject><subject>Robust Spring Effect</subject><subject>Sodium-ion batteries</subject><subject>Structural stability</subject><issn>1433-7851</issn><issn>1521-3773</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNo9UE1Lw0AQXUTBWr16XvCcul_ZJMdSqhZKK7Sel02y225psnGzUXLz6FH8if0lbqkUBmaG93hv5gFwj9EII0QeZW3UiCBCcSh0AQY4JjiiSUIvw8wojZI0xtfgpm13gZ-miA9AP6saZz9MvYFz-3n4-vGqapSTvnMKviqnratkXSgo6xKuvMzN3vgeWg0XkqwNX2IKx7UtVQvzHvqtgmtz-P5dwlXjjqJTrVXhA-Bst9nCRR4sStsE6BZcablv1d1_H4K3p-l68hLNl8-zyXgeNYRSFMVMcpkVmhNa8FTzgpc0Y4glpaaaUZSiHClNwhCjOCaZzjgrtM4TVMZK54wOwcNJN_z53qnWi53tXB0sRciAM04YSwIrO7E-zV71IhxfSdcLjMQxW3HMVpyzFePFbHre6B9CmnJf</recordid><startdate>20231113</startdate><enddate>20231113</enddate><creator>Hu, ChangYan</creator><creator>Li, Ying</creator><creator>Wang, Dong</creator><creator>Wu, Chunjin</creator><creator>Chen, Feng</creator><creator>Zhang, Linghong</creator><creator>Wan, Fang</creator><creator>Hua, Weibo</creator><creator>Sun, Yan</creator><creator>Zhong, Benhe</creator><creator>Wu, Zhenguo</creator><creator>Guo, Xiaodong</creator><general>Wiley Subscription Services, Inc</general><scope>7TM</scope><scope>K9.</scope><orcidid>https://orcid.org/0000-0002-8153-2169</orcidid><orcidid>https://orcid.org/0000-0003-2180-1985</orcidid></search><sort><creationdate>20231113</creationdate><title>Improving Low‐temperature Performance and Stability of Na2Ti6O13 Anodes by the Ti−O Spring Effect through Nb‐doping</title><author>Hu, ChangYan ; Li, Ying ; Wang, Dong ; Wu, Chunjin ; Chen, Feng ; Zhang, Linghong ; Wan, Fang ; Hua, Weibo ; Sun, Yan ; Zhong, Benhe ; Wu, Zhenguo ; Guo, Xiaodong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p2330-54a6a9cf623c68f6c6d394047df3f43080b0ef2308505529f964cffb70d5efb43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Anodes</topic><topic>Charge density</topic><topic>Diffusion barriers</topic><topic>Discharge capacity</topic><topic>Doping</topic><topic>Electrochemical analysis</topic><topic>Electrochemistry</topic><topic>Low conductivity</topic><topic>Low-Temperature</topic><topic>Na2Ti6O13 Anode</topic><topic>Nb-Doping</topic><topic>Robust Spring Effect</topic><topic>Sodium-ion batteries</topic><topic>Structural stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hu, ChangYan</creatorcontrib><creatorcontrib>Li, Ying</creatorcontrib><creatorcontrib>Wang, Dong</creatorcontrib><creatorcontrib>Wu, Chunjin</creatorcontrib><creatorcontrib>Chen, Feng</creatorcontrib><creatorcontrib>Zhang, Linghong</creatorcontrib><creatorcontrib>Wan, Fang</creatorcontrib><creatorcontrib>Hua, Weibo</creatorcontrib><creatorcontrib>Sun, Yan</creatorcontrib><creatorcontrib>Zhong, Benhe</creatorcontrib><creatorcontrib>Wu, Zhenguo</creatorcontrib><creatorcontrib>Guo, Xiaodong</creatorcontrib><collection>Nucleic Acids Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><jtitle>Angewandte Chemie International Edition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hu, ChangYan</au><au>Li, Ying</au><au>Wang, Dong</au><au>Wu, Chunjin</au><au>Chen, Feng</au><au>Zhang, Linghong</au><au>Wan, Fang</au><au>Hua, Weibo</au><au>Sun, Yan</au><au>Zhong, Benhe</au><au>Wu, Zhenguo</au><au>Guo, Xiaodong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improving Low‐temperature Performance and Stability of Na2Ti6O13 Anodes by the Ti−O Spring Effect through Nb‐doping</atitle><jtitle>Angewandte Chemie International Edition</jtitle><date>2023-11-13</date><risdate>2023</risdate><volume>62</volume><issue>46</issue><epage>n/a</epage><issn>1433-7851</issn><eissn>1521-3773</eissn><abstract>Na2Ti6O13 (NTO) with high safety has been regarded as a promising anode candidate for sodium‐ion batteries. In the present study, integrated modification of migration channels broadening, charge density re‐distribution, and oxygen vacancies regulation are realized in case of Nb‐doping and have obtained significantly enhanced cycling performance with 92 % reversible capacity retained after 3000 cycles at 3000 mA g−1. Moreover, unexpected low‐temperature performance with a high discharge capacity of 143 mAh g−1 at 100 mA g−1 under −15 °C is also achieved in the full cell. Theoretical investigation suggests that Nb preferentially replaces Ti3 sites, which effectively improves structural stability and lowers the diffusion energy barrier. What's more important, both the in situ X‐ray diffraction (XRD) and in situ Raman furtherly confirm the robust spring effect of the Ti−O bond, making special charge compensation mechanism and respective regulation strategy to conquer the sluggish transport kinetics and low conductivity, which plays a key role in promoting electrochemical performance. Integrated effects of migration channels broadening, charge density re‐distribution, and oxygen vacancies modulation are achieved via high valence state ion‐doping in case of Nb5+. The modified samples optimized excellent long‐cycle stability, and superior low‐temperature performance in the full cell. Importantly, it is demonstrated for the first time that high‐valent transition metal preferentially replaces the Ti3 site of NTO, effectively improving electrical conductivity and ion diffusion rate. More interestingly, the “spring effect” of chemical bonding, which is twisted‐recovered‐twisted with the motion of Na+, is investigated for the first time by in situ Raman, and the stabilizing effect of Nb enables the more regular and reversible “spring effect”.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/anie.202312310</doi><tpages>8</tpages><edition>International ed. in English</edition><orcidid>https://orcid.org/0000-0002-8153-2169</orcidid><orcidid>https://orcid.org/0000-0003-2180-1985</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1433-7851
ispartof Angewandte Chemie International Edition, 2023-11, Vol.62 (46), p.n/a
issn 1433-7851
1521-3773
language eng
recordid cdi_proquest_journals_2886462447
source Wiley-Blackwell Read & Publish Collection
subjects Anodes
Charge density
Diffusion barriers
Discharge capacity
Doping
Electrochemical analysis
Electrochemistry
Low conductivity
Low-Temperature
Na2Ti6O13 Anode
Nb-Doping
Robust Spring Effect
Sodium-ion batteries
Structural stability
title Improving Low‐temperature Performance and Stability of Na2Ti6O13 Anodes by the Ti−O Spring Effect through Nb‐doping
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T19%3A57%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improving%20Low%E2%80%90temperature%20Performance%20and%20Stability%20of%20Na2Ti6O13%20Anodes%20by%20the%20Ti%E2%88%92O%20Spring%20Effect%20through%20Nb%E2%80%90doping&rft.jtitle=Angewandte%20Chemie%20International%20Edition&rft.au=Hu,%20ChangYan&rft.date=2023-11-13&rft.volume=62&rft.issue=46&rft.epage=n/a&rft.issn=1433-7851&rft.eissn=1521-3773&rft_id=info:doi/10.1002/anie.202312310&rft_dat=%3Cproquest_wiley%3E2886462447%3C/proquest_wiley%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p2330-54a6a9cf623c68f6c6d394047df3f43080b0ef2308505529f964cffb70d5efb43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2886462447&rft_id=info:pmid/&rfr_iscdi=true