Loading…
The Merino--Welsh conjecture is false for matroids
The matroidal version of the Merino--Welsh conjecture states that the Tutte polynomial \(T_M(x,y)\) of any matroid \(M\) without loops and coloops satisfies that $$\max(T_M(2,0),T_M(0,2))\geq T_M(1,1).$$ Equivalently, if the Merino--Welsh conjecture is true for all matroids without loops and coloops...
Saved in:
Published in: | arXiv.org 2024-02 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Beke, Csongor Csáji, Gergely Kál Csikvári, Péter Pituk, Sára |
description | The matroidal version of the Merino--Welsh conjecture states that the Tutte polynomial \(T_M(x,y)\) of any matroid \(M\) without loops and coloops satisfies that $$\max(T_M(2,0),T_M(0,2))\geq T_M(1,1).$$ Equivalently, if the Merino--Welsh conjecture is true for all matroids without loops and coloops, then the following inequalities are also satisfied for all matroids without loops and coloops: $$T_M(2,0)+T_M(0,2)\geq 2T_M(1,1),$$ and $$T_M(2,0)T_M(0,2)\geq T_M(1,1)^2.$$ We show a counter-example for these inequalities. |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2886462599</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2886462599</sourcerecordid><originalsourceid>FETCH-proquest_journals_28864625993</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mQwCslIVfBNLcrMy9fVDU_NKc5QSM7Py0pNLiktSlXILFZIS8wpTlVIyy9SyE0sKcrPTCnmYWAFC_JCaW4GZTfXEGcP3YKi_MLS1OKS-Kz80qI8oFS8kYWFmYmZkamlpTFxqgCrRzOY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2886462599</pqid></control><display><type>article</type><title>The Merino--Welsh conjecture is false for matroids</title><source>Publicly Available Content Database</source><creator>Beke, Csongor ; Csáji, Gergely Kál ; Csikvári, Péter ; Pituk, Sára</creator><creatorcontrib>Beke, Csongor ; Csáji, Gergely Kál ; Csikvári, Péter ; Pituk, Sára</creatorcontrib><description>The matroidal version of the Merino--Welsh conjecture states that the Tutte polynomial \(T_M(x,y)\) of any matroid \(M\) without loops and coloops satisfies that $$\max(T_M(2,0),T_M(0,2))\geq T_M(1,1).$$ Equivalently, if the Merino--Welsh conjecture is true for all matroids without loops and coloops, then the following inequalities are also satisfied for all matroids without loops and coloops: $$T_M(2,0)+T_M(0,2)\geq 2T_M(1,1),$$ and $$T_M(2,0)T_M(0,2)\geq T_M(1,1)^2.$$ We show a counter-example for these inequalities.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Inequalities ; Polynomials</subject><ispartof>arXiv.org, 2024-02</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2886462599?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>776,780,25731,36989,44566</link.rule.ids></links><search><creatorcontrib>Beke, Csongor</creatorcontrib><creatorcontrib>Csáji, Gergely Kál</creatorcontrib><creatorcontrib>Csikvári, Péter</creatorcontrib><creatorcontrib>Pituk, Sára</creatorcontrib><title>The Merino--Welsh conjecture is false for matroids</title><title>arXiv.org</title><description>The matroidal version of the Merino--Welsh conjecture states that the Tutte polynomial \(T_M(x,y)\) of any matroid \(M\) without loops and coloops satisfies that $$\max(T_M(2,0),T_M(0,2))\geq T_M(1,1).$$ Equivalently, if the Merino--Welsh conjecture is true for all matroids without loops and coloops, then the following inequalities are also satisfied for all matroids without loops and coloops: $$T_M(2,0)+T_M(0,2)\geq 2T_M(1,1),$$ and $$T_M(2,0)T_M(0,2)\geq T_M(1,1)^2.$$ We show a counter-example for these inequalities.</description><subject>Inequalities</subject><subject>Polynomials</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mQwCslIVfBNLcrMy9fVDU_NKc5QSM7Py0pNLiktSlXILFZIS8wpTlVIyy9SyE0sKcrPTCnmYWAFC_JCaW4GZTfXEGcP3YKi_MLS1OKS-Kz80qI8oFS8kYWFmYmZkamlpTFxqgCrRzOY</recordid><startdate>20240223</startdate><enddate>20240223</enddate><creator>Beke, Csongor</creator><creator>Csáji, Gergely Kál</creator><creator>Csikvári, Péter</creator><creator>Pituk, Sára</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240223</creationdate><title>The Merino--Welsh conjecture is false for matroids</title><author>Beke, Csongor ; Csáji, Gergely Kál ; Csikvári, Péter ; Pituk, Sára</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_28864625993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Inequalities</topic><topic>Polynomials</topic><toplevel>online_resources</toplevel><creatorcontrib>Beke, Csongor</creatorcontrib><creatorcontrib>Csáji, Gergely Kál</creatorcontrib><creatorcontrib>Csikvári, Péter</creatorcontrib><creatorcontrib>Pituk, Sára</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Beke, Csongor</au><au>Csáji, Gergely Kál</au><au>Csikvári, Péter</au><au>Pituk, Sára</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>The Merino--Welsh conjecture is false for matroids</atitle><jtitle>arXiv.org</jtitle><date>2024-02-23</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>The matroidal version of the Merino--Welsh conjecture states that the Tutte polynomial \(T_M(x,y)\) of any matroid \(M\) without loops and coloops satisfies that $$\max(T_M(2,0),T_M(0,2))\geq T_M(1,1).$$ Equivalently, if the Merino--Welsh conjecture is true for all matroids without loops and coloops, then the following inequalities are also satisfied for all matroids without loops and coloops: $$T_M(2,0)+T_M(0,2)\geq 2T_M(1,1),$$ and $$T_M(2,0)T_M(0,2)\geq T_M(1,1)^2.$$ We show a counter-example for these inequalities.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-02 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2886462599 |
source | Publicly Available Content Database |
subjects | Inequalities Polynomials |
title | The Merino--Welsh conjecture is false for matroids |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T14%3A13%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=The%20Merino--Welsh%20conjecture%20is%20false%20for%20matroids&rft.jtitle=arXiv.org&rft.au=Beke,%20Csongor&rft.date=2024-02-23&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2886462599%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_28864625993%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2886462599&rft_id=info:pmid/&rfr_iscdi=true |