Loading…

AFPQ: Asymmetric Floating Point Quantization for LLMs

Large language models (LLMs) show great performance in various tasks, but face deployment challenges from limited memory capacity and bandwidth. Low-bit weight quantization can save memory and accelerate inference. Although floating-point (FP) formats show good performance in LLM quantization, they...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2023-11
Main Authors: Zhang, Yijia, Zhang, Sicheng, Cao, Shijie, Du, Dayou, Wei, Jianyu, Cao, Ting, Xu, Ningyi
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Zhang, Yijia
Zhang, Sicheng
Cao, Shijie
Du, Dayou
Wei, Jianyu
Cao, Ting
Xu, Ningyi
description Large language models (LLMs) show great performance in various tasks, but face deployment challenges from limited memory capacity and bandwidth. Low-bit weight quantization can save memory and accelerate inference. Although floating-point (FP) formats show good performance in LLM quantization, they tend to perform poorly with small group sizes or sub-4 bits. We find the reason is that the absence of asymmetry in previous FP quantization makes it unsuitable for handling asymmetric value distribution of LLM weight tensors. In this work, we propose asymmetric FP quantization (AFPQ), which sets separate scales for positive and negative values. Our method leads to large accuracy improvements and can be easily plugged into other quantization methods, including GPTQ and AWQ, for better performance. Besides, no additional storage is needed compared with asymmetric integer (INT) quantization. The code is available at https://github.com/zhangsichengsjtu/AFPQ.
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2886462806</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2886462806</sourcerecordid><originalsourceid>FETCH-proquest_journals_28864628063</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mQwdXQLCLRScCyuzM1NLSnKTFZwy8lPLMnMS1cIyM_MK1EILE3MK8msAgrl5ymk5Rcp-Pj4FvMwsKYl5hSn8kJpbgZlN9cQZw_dgqL8wtLU4pL4rPzSojygVLyRhYWZiZmRhYGZMXGqAC8_NEI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2886462806</pqid></control><display><type>article</type><title>AFPQ: Asymmetric Floating Point Quantization for LLMs</title><source>Publicly Available Content Database</source><creator>Zhang, Yijia ; Zhang, Sicheng ; Cao, Shijie ; Du, Dayou ; Wei, Jianyu ; Cao, Ting ; Xu, Ningyi</creator><creatorcontrib>Zhang, Yijia ; Zhang, Sicheng ; Cao, Shijie ; Du, Dayou ; Wei, Jianyu ; Cao, Ting ; Xu, Ningyi</creatorcontrib><description>Large language models (LLMs) show great performance in various tasks, but face deployment challenges from limited memory capacity and bandwidth. Low-bit weight quantization can save memory and accelerate inference. Although floating-point (FP) formats show good performance in LLM quantization, they tend to perform poorly with small group sizes or sub-4 bits. We find the reason is that the absence of asymmetry in previous FP quantization makes it unsuitable for handling asymmetric value distribution of LLM weight tensors. In this work, we propose asymmetric FP quantization (AFPQ), which sets separate scales for positive and negative values. Our method leads to large accuracy improvements and can be easily plugged into other quantization methods, including GPTQ and AWQ, for better performance. Besides, no additional storage is needed compared with asymmetric integer (INT) quantization. The code is available at https://github.com/zhangsichengsjtu/AFPQ.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Floating point arithmetic ; Large language models ; Skewed distributions ; Tensors</subject><ispartof>arXiv.org, 2023-11</ispartof><rights>2023. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2886462806?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25751,37010,44588</link.rule.ids></links><search><creatorcontrib>Zhang, Yijia</creatorcontrib><creatorcontrib>Zhang, Sicheng</creatorcontrib><creatorcontrib>Cao, Shijie</creatorcontrib><creatorcontrib>Du, Dayou</creatorcontrib><creatorcontrib>Wei, Jianyu</creatorcontrib><creatorcontrib>Cao, Ting</creatorcontrib><creatorcontrib>Xu, Ningyi</creatorcontrib><title>AFPQ: Asymmetric Floating Point Quantization for LLMs</title><title>arXiv.org</title><description>Large language models (LLMs) show great performance in various tasks, but face deployment challenges from limited memory capacity and bandwidth. Low-bit weight quantization can save memory and accelerate inference. Although floating-point (FP) formats show good performance in LLM quantization, they tend to perform poorly with small group sizes or sub-4 bits. We find the reason is that the absence of asymmetry in previous FP quantization makes it unsuitable for handling asymmetric value distribution of LLM weight tensors. In this work, we propose asymmetric FP quantization (AFPQ), which sets separate scales for positive and negative values. Our method leads to large accuracy improvements and can be easily plugged into other quantization methods, including GPTQ and AWQ, for better performance. Besides, no additional storage is needed compared with asymmetric integer (INT) quantization. The code is available at https://github.com/zhangsichengsjtu/AFPQ.</description><subject>Floating point arithmetic</subject><subject>Large language models</subject><subject>Skewed distributions</subject><subject>Tensors</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mQwdXQLCLRScCyuzM1NLSnKTFZwy8lPLMnMS1cIyM_MK1EILE3MK8msAgrl5ymk5Rcp-Pj4FvMwsKYl5hSn8kJpbgZlN9cQZw_dgqL8wtLU4pL4rPzSojygVLyRhYWZiZmRhYGZMXGqAC8_NEI</recordid><startdate>20231103</startdate><enddate>20231103</enddate><creator>Zhang, Yijia</creator><creator>Zhang, Sicheng</creator><creator>Cao, Shijie</creator><creator>Du, Dayou</creator><creator>Wei, Jianyu</creator><creator>Cao, Ting</creator><creator>Xu, Ningyi</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20231103</creationdate><title>AFPQ: Asymmetric Floating Point Quantization for LLMs</title><author>Zhang, Yijia ; Zhang, Sicheng ; Cao, Shijie ; Du, Dayou ; Wei, Jianyu ; Cao, Ting ; Xu, Ningyi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_28864628063</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Floating point arithmetic</topic><topic>Large language models</topic><topic>Skewed distributions</topic><topic>Tensors</topic><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Yijia</creatorcontrib><creatorcontrib>Zhang, Sicheng</creatorcontrib><creatorcontrib>Cao, Shijie</creatorcontrib><creatorcontrib>Du, Dayou</creatorcontrib><creatorcontrib>Wei, Jianyu</creatorcontrib><creatorcontrib>Cao, Ting</creatorcontrib><creatorcontrib>Xu, Ningyi</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Yijia</au><au>Zhang, Sicheng</au><au>Cao, Shijie</au><au>Du, Dayou</au><au>Wei, Jianyu</au><au>Cao, Ting</au><au>Xu, Ningyi</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>AFPQ: Asymmetric Floating Point Quantization for LLMs</atitle><jtitle>arXiv.org</jtitle><date>2023-11-03</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>Large language models (LLMs) show great performance in various tasks, but face deployment challenges from limited memory capacity and bandwidth. Low-bit weight quantization can save memory and accelerate inference. Although floating-point (FP) formats show good performance in LLM quantization, they tend to perform poorly with small group sizes or sub-4 bits. We find the reason is that the absence of asymmetry in previous FP quantization makes it unsuitable for handling asymmetric value distribution of LLM weight tensors. In this work, we propose asymmetric FP quantization (AFPQ), which sets separate scales for positive and negative values. Our method leads to large accuracy improvements and can be easily plugged into other quantization methods, including GPTQ and AWQ, for better performance. Besides, no additional storage is needed compared with asymmetric integer (INT) quantization. The code is available at https://github.com/zhangsichengsjtu/AFPQ.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2023-11
issn 2331-8422
language eng
recordid cdi_proquest_journals_2886462806
source Publicly Available Content Database
subjects Floating point arithmetic
Large language models
Skewed distributions
Tensors
title AFPQ: Asymmetric Floating Point Quantization for LLMs
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T10%3A01%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=AFPQ:%20Asymmetric%20Floating%20Point%20Quantization%20for%20LLMs&rft.jtitle=arXiv.org&rft.au=Zhang,%20Yijia&rft.date=2023-11-03&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2886462806%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_28864628063%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2886462806&rft_id=info:pmid/&rfr_iscdi=true