Loading…

Occupational health knowledge discovery based on association rules applied to workers' body parts protection: a case study in the automotive industry

Occupational Health Protection (OHP) is mandatory by law and can be accomplished by considering the participation of others besides occupational physicians. The data shared can originate knowledge that might influence other processes related to occupational risk prevention. In this study, we used Ar...

Full description

Saved in:
Bibliographic Details
Published in:Computer methods in biomechanics and biomedical engineering 2023-11, Vol.26 (15), p.1875-1888
Main Authors: Mollaei, Nafiseh, Fujao, Carlos, Rodrigues, Joao, Cepeda, Catia, Gamboa, Hugo
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Occupational Health Protection (OHP) is mandatory by law and can be accomplished by considering the participation of others besides occupational physicians. The data shared can originate knowledge that might influence other processes related to occupational risk prevention. In this study, we used Artificial Intelligence (AI) methods to extract patterns among records shared under these circumstances over two years in the automotive industry. Records featuring OHP data against physical working conditions were selected, and a database of 383 profiles was designed. As Occupational Health Protection profiles under study are associated with work functional ability reduction, the body part(s) (n = 14) where it occurred were identified. Association Rules (ARs) coupled with Natural Language Processing techniques were applied to find meaningful hidden relationships and to identify the occurrence of protection profiles being assigned to at least two body parts simultaneously. After filtering ARs using three metrics (support, confidence, and lift), 54 ARs were found. The distribution of simultaneous body parts is presented as being higher in Special projects (n = 5). The results can use in: (i) design a multi-site body parts functional work ability (loss) model; (ii) model the capacity of organizations to retain workers in their working settings and (iii) prevent work-related musculoskeletal symptoms.
ISSN:1025-5842
1476-8259
DOI:10.1080/10255842.2022.2152678