Loading…

Causal Question Answering with Reinforcement Learning

Causal questions inquire about causal relationships between different events or phenomena. They are important for a variety of use cases, including virtual assistants and search engines. However, many current approaches to causal question answering cannot provide explanations or evidence for their a...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2024-03
Main Authors: Blübaum, Lukas, Heindorf, Stefan
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Causal questions inquire about causal relationships between different events or phenomena. They are important for a variety of use cases, including virtual assistants and search engines. However, many current approaches to causal question answering cannot provide explanations or evidence for their answers. Hence, in this paper, we aim to answer causal questions with a causality graph, a large-scale dataset of causal relations between noun phrases along with the relations' provenance data. Inspired by recent, successful applications of reinforcement learning to knowledge graph tasks, such as link prediction and fact-checking, we explore the application of reinforcement learning on a causality graph for causal question answering. We introduce an Actor-Critic-based agent which learns to search through the graph to answer causal questions. We bootstrap the agent with a supervised learning procedure to deal with large action spaces and sparse rewards. Our evaluation shows that the agent successfully prunes the search space to answer binary causal questions by visiting less than 30 nodes per question compared to over 3,000 nodes by a naive breadth-first search. Our ablation study indicates that our supervised learning strategy provides a strong foundation upon which our reinforcement learning agent improves. The paths returned by our agent explain the mechanisms by which a cause produces an effect. Moreover, for each edge on a path, our causality graph provides its original source allowing for easy verification of paths.
ISSN:2331-8422
DOI:10.48550/arxiv.2311.02760