Loading…

Posterior Instance Injection Detector for Arbitrary-Oriented Object Detection From Optical Remote-Sensing Imagery

Arbitrary-oriented object detection (AOOD) from optical remote-sensing imagery has to correctly generate delicate oriented boundary box (OBB) and meanwhile identify their specific categories. However, how to make detectors learn the delicate parameters of OBBs, especially for the crucial orientation...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on geoscience and remote sensing 2023, Vol.61, p.1-18
Main Authors: Zhang, Tong, Zhuang, Yin, Chen, He, Wang, Guanqun, Ge, Lihui, Chen, Liang, Dong, Hao, Li, Lianlin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c294t-ea3e4ca78ac895f9d0d8d9ef5c664c2bb1ae8c09ce6c38b556a09bd26a7e9ca63
cites cdi_FETCH-LOGICAL-c294t-ea3e4ca78ac895f9d0d8d9ef5c664c2bb1ae8c09ce6c38b556a09bd26a7e9ca63
container_end_page 18
container_issue
container_start_page 1
container_title IEEE transactions on geoscience and remote sensing
container_volume 61
creator Zhang, Tong
Zhuang, Yin
Chen, He
Wang, Guanqun
Ge, Lihui
Chen, Liang
Dong, Hao
Li, Lianlin
description Arbitrary-oriented object detection (AOOD) from optical remote-sensing imagery has to correctly generate delicate oriented boundary box (OBB) and meanwhile identify their specific categories. However, how to make detectors learn the delicate parameters of OBBs, especially for the crucial orientation information, and identify object categories from complex backgrounds becomes a challenging task. Therefore, in this article, to explore a better way to guide the detector to learn specific categories and parametric information of OBBs, a novel one-stage anchor-free detector called posterior instance injection detector (PIIDet) is proposed for AOOD. First, as the anchor-free manner lacks prior information, an object-aware posterior guidance (OAPG) structure is proposed to generate specific-category instances used for conditioning on OBB prediction. This structure can assist the proposed PIIDet in better learning the relative parametric information of OBBs corresponding to their specific categories. Besides, to guarantee a high-quality injection of specific category instances, a new hierarchical feature fusion module (HFFM) is developed to establish a suitable multiscale feature mapping space. Second, considering the negative optimization of angle regression, which is caused by the boundary discontinuity of angular periods and sudden shifts of the relation between width and height in the training phase, a novel binary classification embedded angle regression space (BCE-RegSpace) is devised for providing continuous angle regression space and stable relation between the width and height. Finally, extensive experiments are executed on three AOOD benchmarks (e.g., DOTA, DIOR-R, and HRSC2016), and results proved that the proposed concise one-stage anchor-free PIIDet can reach the state-of-the-art (SOTA) performance and meanwhile have an impressive inference speed.
doi_str_mv 10.1109/TGRS.2023.3327123
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2887108745</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10292881</ieee_id><sourcerecordid>2887108745</sourcerecordid><originalsourceid>FETCH-LOGICAL-c294t-ea3e4ca78ac895f9d0d8d9ef5c664c2bb1ae8c09ce6c38b556a09bd26a7e9ca63</originalsourceid><addsrcrecordid>eNpNkE9rAjEQxUNpodb2AxR6WOh5bf7sZpOj2GoFYYvac8hmZ2XF3WgSD377ZtFDD8MMzO-9YR5CrwRPCMHyY7tYbyYUUzZhjBaEsjs0InkuUsyz7B6NMJE8pULSR_Tk_R5jkuWkGKHTj_UBXGtdsux90L2BOOzBhNb2ySeEOMVdE2vqqjY47S5p6VroA9RJWQ3kDRsEc2e7pDyG1uhDsobOBkg30Pu23yXLTu_AXZ7RQ6MPHl5ufYx-51_b2Xe6KhfL2XSVGiqzkIJmkBldCG2EzBtZ41rUEprccJ4ZWlVEgzBYGuCGiSrPucayqinXBUijORuj96vv0dnTGXxQe3t2fTypqBAFwaLI8kiRK2Wc9d5Bo46u7eKTimA1JKuGZNWQrLolGzVvV00LAP94KqMxYX_JyneI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2887108745</pqid></control><display><type>article</type><title>Posterior Instance Injection Detector for Arbitrary-Oriented Object Detection From Optical Remote-Sensing Imagery</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Zhang, Tong ; Zhuang, Yin ; Chen, He ; Wang, Guanqun ; Ge, Lihui ; Chen, Liang ; Dong, Hao ; Li, Lianlin</creator><creatorcontrib>Zhang, Tong ; Zhuang, Yin ; Chen, He ; Wang, Guanqun ; Ge, Lihui ; Chen, Liang ; Dong, Hao ; Li, Lianlin</creatorcontrib><description>Arbitrary-oriented object detection (AOOD) from optical remote-sensing imagery has to correctly generate delicate oriented boundary box (OBB) and meanwhile identify their specific categories. However, how to make detectors learn the delicate parameters of OBBs, especially for the crucial orientation information, and identify object categories from complex backgrounds becomes a challenging task. Therefore, in this article, to explore a better way to guide the detector to learn specific categories and parametric information of OBBs, a novel one-stage anchor-free detector called posterior instance injection detector (PIIDet) is proposed for AOOD. First, as the anchor-free manner lacks prior information, an object-aware posterior guidance (OAPG) structure is proposed to generate specific-category instances used for conditioning on OBB prediction. This structure can assist the proposed PIIDet in better learning the relative parametric information of OBBs corresponding to their specific categories. Besides, to guarantee a high-quality injection of specific category instances, a new hierarchical feature fusion module (HFFM) is developed to establish a suitable multiscale feature mapping space. Second, considering the negative optimization of angle regression, which is caused by the boundary discontinuity of angular periods and sudden shifts of the relation between width and height in the training phase, a novel binary classification embedded angle regression space (BCE-RegSpace) is devised for providing continuous angle regression space and stable relation between the width and height. Finally, extensive experiments are executed on three AOOD benchmarks (e.g., DOTA, DIOR-R, and HRSC2016), and results proved that the proposed concise one-stage anchor-free PIIDet can reach the state-of-the-art (SOTA) performance and meanwhile have an impressive inference speed.</description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/TGRS.2023.3327123</identifier><identifier>CODEN: IGRSD2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Arbitrary-oriented object detection (AOOD) ; Benchmarks ; Categories ; Detection ; Detectors ; Height ; Imagery ; Injection ; Learning ; Manuals ; Object detection ; Object recognition ; one-stage anchor-free detector ; Optical imaging ; optical remote sensing ; Optimization ; Parameter identification ; Regression ; Remote sensing ; Sensors ; Shape ; Task analysis ; Width</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2023, Vol.61, p.1-18</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c294t-ea3e4ca78ac895f9d0d8d9ef5c664c2bb1ae8c09ce6c38b556a09bd26a7e9ca63</citedby><cites>FETCH-LOGICAL-c294t-ea3e4ca78ac895f9d0d8d9ef5c664c2bb1ae8c09ce6c38b556a09bd26a7e9ca63</cites><orcidid>0000-0002-0443-1081 ; 0000-0002-7984-9909 ; 0000-0002-7850-8766 ; 0000-0002-2295-4425 ; 0000-0002-1769-9829 ; 0009-0004-9168-052X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10292881$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,4021,27921,27922,27923,54794</link.rule.ids></links><search><creatorcontrib>Zhang, Tong</creatorcontrib><creatorcontrib>Zhuang, Yin</creatorcontrib><creatorcontrib>Chen, He</creatorcontrib><creatorcontrib>Wang, Guanqun</creatorcontrib><creatorcontrib>Ge, Lihui</creatorcontrib><creatorcontrib>Chen, Liang</creatorcontrib><creatorcontrib>Dong, Hao</creatorcontrib><creatorcontrib>Li, Lianlin</creatorcontrib><title>Posterior Instance Injection Detector for Arbitrary-Oriented Object Detection From Optical Remote-Sensing Imagery</title><title>IEEE transactions on geoscience and remote sensing</title><addtitle>TGRS</addtitle><description>Arbitrary-oriented object detection (AOOD) from optical remote-sensing imagery has to correctly generate delicate oriented boundary box (OBB) and meanwhile identify their specific categories. However, how to make detectors learn the delicate parameters of OBBs, especially for the crucial orientation information, and identify object categories from complex backgrounds becomes a challenging task. Therefore, in this article, to explore a better way to guide the detector to learn specific categories and parametric information of OBBs, a novel one-stage anchor-free detector called posterior instance injection detector (PIIDet) is proposed for AOOD. First, as the anchor-free manner lacks prior information, an object-aware posterior guidance (OAPG) structure is proposed to generate specific-category instances used for conditioning on OBB prediction. This structure can assist the proposed PIIDet in better learning the relative parametric information of OBBs corresponding to their specific categories. Besides, to guarantee a high-quality injection of specific category instances, a new hierarchical feature fusion module (HFFM) is developed to establish a suitable multiscale feature mapping space. Second, considering the negative optimization of angle regression, which is caused by the boundary discontinuity of angular periods and sudden shifts of the relation between width and height in the training phase, a novel binary classification embedded angle regression space (BCE-RegSpace) is devised for providing continuous angle regression space and stable relation between the width and height. Finally, extensive experiments are executed on three AOOD benchmarks (e.g., DOTA, DIOR-R, and HRSC2016), and results proved that the proposed concise one-stage anchor-free PIIDet can reach the state-of-the-art (SOTA) performance and meanwhile have an impressive inference speed.</description><subject>Arbitrary-oriented object detection (AOOD)</subject><subject>Benchmarks</subject><subject>Categories</subject><subject>Detection</subject><subject>Detectors</subject><subject>Height</subject><subject>Imagery</subject><subject>Injection</subject><subject>Learning</subject><subject>Manuals</subject><subject>Object detection</subject><subject>Object recognition</subject><subject>one-stage anchor-free detector</subject><subject>Optical imaging</subject><subject>optical remote sensing</subject><subject>Optimization</subject><subject>Parameter identification</subject><subject>Regression</subject><subject>Remote sensing</subject><subject>Sensors</subject><subject>Shape</subject><subject>Task analysis</subject><subject>Width</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpNkE9rAjEQxUNpodb2AxR6WOh5bf7sZpOj2GoFYYvac8hmZ2XF3WgSD377ZtFDD8MMzO-9YR5CrwRPCMHyY7tYbyYUUzZhjBaEsjs0InkuUsyz7B6NMJE8pULSR_Tk_R5jkuWkGKHTj_UBXGtdsux90L2BOOzBhNb2ySeEOMVdE2vqqjY47S5p6VroA9RJWQ3kDRsEc2e7pDyG1uhDsobOBkg30Pu23yXLTu_AXZ7RQ6MPHl5ufYx-51_b2Xe6KhfL2XSVGiqzkIJmkBldCG2EzBtZ41rUEprccJ4ZWlVEgzBYGuCGiSrPucayqinXBUijORuj96vv0dnTGXxQe3t2fTypqBAFwaLI8kiRK2Wc9d5Bo46u7eKTimA1JKuGZNWQrLolGzVvV00LAP94KqMxYX_JyneI</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>Zhang, Tong</creator><creator>Zhuang, Yin</creator><creator>Chen, He</creator><creator>Wang, Guanqun</creator><creator>Ge, Lihui</creator><creator>Chen, Liang</creator><creator>Dong, Hao</creator><creator>Li, Lianlin</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-0443-1081</orcidid><orcidid>https://orcid.org/0000-0002-7984-9909</orcidid><orcidid>https://orcid.org/0000-0002-7850-8766</orcidid><orcidid>https://orcid.org/0000-0002-2295-4425</orcidid><orcidid>https://orcid.org/0000-0002-1769-9829</orcidid><orcidid>https://orcid.org/0009-0004-9168-052X</orcidid></search><sort><creationdate>2023</creationdate><title>Posterior Instance Injection Detector for Arbitrary-Oriented Object Detection From Optical Remote-Sensing Imagery</title><author>Zhang, Tong ; Zhuang, Yin ; Chen, He ; Wang, Guanqun ; Ge, Lihui ; Chen, Liang ; Dong, Hao ; Li, Lianlin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c294t-ea3e4ca78ac895f9d0d8d9ef5c664c2bb1ae8c09ce6c38b556a09bd26a7e9ca63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Arbitrary-oriented object detection (AOOD)</topic><topic>Benchmarks</topic><topic>Categories</topic><topic>Detection</topic><topic>Detectors</topic><topic>Height</topic><topic>Imagery</topic><topic>Injection</topic><topic>Learning</topic><topic>Manuals</topic><topic>Object detection</topic><topic>Object recognition</topic><topic>one-stage anchor-free detector</topic><topic>Optical imaging</topic><topic>optical remote sensing</topic><topic>Optimization</topic><topic>Parameter identification</topic><topic>Regression</topic><topic>Remote sensing</topic><topic>Sensors</topic><topic>Shape</topic><topic>Task analysis</topic><topic>Width</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Tong</creatorcontrib><creatorcontrib>Zhuang, Yin</creatorcontrib><creatorcontrib>Chen, He</creatorcontrib><creatorcontrib>Wang, Guanqun</creatorcontrib><creatorcontrib>Ge, Lihui</creatorcontrib><creatorcontrib>Chen, Liang</creatorcontrib><creatorcontrib>Dong, Hao</creatorcontrib><creatorcontrib>Li, Lianlin</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEL</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Tong</au><au>Zhuang, Yin</au><au>Chen, He</au><au>Wang, Guanqun</au><au>Ge, Lihui</au><au>Chen, Liang</au><au>Dong, Hao</au><au>Li, Lianlin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Posterior Instance Injection Detector for Arbitrary-Oriented Object Detection From Optical Remote-Sensing Imagery</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><stitle>TGRS</stitle><date>2023</date><risdate>2023</risdate><volume>61</volume><spage>1</spage><epage>18</epage><pages>1-18</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><coden>IGRSD2</coden><abstract>Arbitrary-oriented object detection (AOOD) from optical remote-sensing imagery has to correctly generate delicate oriented boundary box (OBB) and meanwhile identify their specific categories. However, how to make detectors learn the delicate parameters of OBBs, especially for the crucial orientation information, and identify object categories from complex backgrounds becomes a challenging task. Therefore, in this article, to explore a better way to guide the detector to learn specific categories and parametric information of OBBs, a novel one-stage anchor-free detector called posterior instance injection detector (PIIDet) is proposed for AOOD. First, as the anchor-free manner lacks prior information, an object-aware posterior guidance (OAPG) structure is proposed to generate specific-category instances used for conditioning on OBB prediction. This structure can assist the proposed PIIDet in better learning the relative parametric information of OBBs corresponding to their specific categories. Besides, to guarantee a high-quality injection of specific category instances, a new hierarchical feature fusion module (HFFM) is developed to establish a suitable multiscale feature mapping space. Second, considering the negative optimization of angle regression, which is caused by the boundary discontinuity of angular periods and sudden shifts of the relation between width and height in the training phase, a novel binary classification embedded angle regression space (BCE-RegSpace) is devised for providing continuous angle regression space and stable relation between the width and height. Finally, extensive experiments are executed on three AOOD benchmarks (e.g., DOTA, DIOR-R, and HRSC2016), and results proved that the proposed concise one-stage anchor-free PIIDet can reach the state-of-the-art (SOTA) performance and meanwhile have an impressive inference speed.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TGRS.2023.3327123</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-0443-1081</orcidid><orcidid>https://orcid.org/0000-0002-7984-9909</orcidid><orcidid>https://orcid.org/0000-0002-7850-8766</orcidid><orcidid>https://orcid.org/0000-0002-2295-4425</orcidid><orcidid>https://orcid.org/0000-0002-1769-9829</orcidid><orcidid>https://orcid.org/0009-0004-9168-052X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0196-2892
ispartof IEEE transactions on geoscience and remote sensing, 2023, Vol.61, p.1-18
issn 0196-2892
1558-0644
language eng
recordid cdi_proquest_journals_2887108745
source IEEE Electronic Library (IEL) Journals
subjects Arbitrary-oriented object detection (AOOD)
Benchmarks
Categories
Detection
Detectors
Height
Imagery
Injection
Learning
Manuals
Object detection
Object recognition
one-stage anchor-free detector
Optical imaging
optical remote sensing
Optimization
Parameter identification
Regression
Remote sensing
Sensors
Shape
Task analysis
Width
title Posterior Instance Injection Detector for Arbitrary-Oriented Object Detection From Optical Remote-Sensing Imagery
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T11%3A57%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Posterior%20Instance%20Injection%20Detector%20for%20Arbitrary-Oriented%20Object%20Detection%20From%20Optical%20Remote-Sensing%20Imagery&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Zhang,%20Tong&rft.date=2023&rft.volume=61&rft.spage=1&rft.epage=18&rft.pages=1-18&rft.issn=0196-2892&rft.eissn=1558-0644&rft.coden=IGRSD2&rft_id=info:doi/10.1109/TGRS.2023.3327123&rft_dat=%3Cproquest_cross%3E2887108745%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c294t-ea3e4ca78ac895f9d0d8d9ef5c664c2bb1ae8c09ce6c38b556a09bd26a7e9ca63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2887108745&rft_id=info:pmid/&rft_ieee_id=10292881&rfr_iscdi=true