Loading…
Hybrid-Order Anomaly Detection on Attributed Networks
Anomaly detection on attributed networks has received an increasing amount of attention in recent years. Despite the success, most of the existing methods only focus on detecting the abnormal nodes while fail to detect the abnormal subgraphs. In this paper, we define a new problem of hybrid-order an...
Saved in:
Published in: | IEEE transactions on knowledge and data engineering 2023-12, Vol.35 (12), p.12249-12263 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c293t-698aba6063cf8ee63c75ea574ce1ab44f9b9f37225fefe330ebba3c3a93542e83 |
---|---|
cites | cdi_FETCH-LOGICAL-c293t-698aba6063cf8ee63c75ea574ce1ab44f9b9f37225fefe330ebba3c3a93542e83 |
container_end_page | 12263 |
container_issue | 12 |
container_start_page | 12249 |
container_title | IEEE transactions on knowledge and data engineering |
container_volume | 35 |
creator | Huang, Ling Zhu, Ye Gao, Yuefang Liu, Tuo Chang, Chao Liu, Caixing Tang, Yong Wang, Chang-Dong |
description | Anomaly detection on attributed networks has received an increasing amount of attention in recent years. Despite the success, most of the existing methods only focus on detecting the abnormal nodes while fail to detect the abnormal subgraphs. In this paper, we define a new problem of hybrid-order anomaly detection on attributed networks, which aims to detect both of the abnormal nodes and subgraphs. To this end, a new deep learning model called Hybrid-Order Graph Attention Network (HO-GAT) is developed, which is able to simultaneously detect the abnormal nodes and motif instances in an attributed network. In order to model the mutual influence between nodes and motif instances, the learning procedures of the node representation and the motif instance representation are integrated into a unified graph attention network with a novel hybrid-order self-attention mechanism. After learning the node representation and the motif instance representation, two decoders are respectively designed to reconstruct the attribute information of the nodes and motif instances, and the hybrid-order topological structure among nodes and motif instances. And finally, the reconstruction errors are utilized as the abnormal score of nodes and motif instances respectively. Extensive experiments conducted on real-world datasets have confirmed the effectiveness of the HO-GAT method. |
doi_str_mv | 10.1109/TKDE.2021.3117842 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_2887114110</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9560054</ieee_id><sourcerecordid>2887114110</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-698aba6063cf8ee63c75ea574ce1ab44f9b9f37225fefe330ebba3c3a93542e83</originalsourceid><addsrcrecordid>eNo9kE9LAzEQxYMoWKsfQLwseN6ayZ_d5FjaasViL_Ucku0EtrbdmmSRfntTWoSBN4f3Zng_Qh6BjgCofll9TGcjRhmMOECtBLsiA5BSlQw0XOedCigFF_UtuYtxQylVtYIBkfOjC-26XIY1hmK873Z2eyymmLBJbbcv8oxTCq3rE66LT0y_XfiO9-TG223Eh4sOydfrbDWZl4vl2_tkvCgbpnkqK62ssxWteOMVYpZaopW1aBCsE8Jrpz2vGZMePXJO0TnLG241l4Kh4kPyfL57CN1PjzGZTdeHfX5pmFI1gMjlswvOriZ0MQb05hDanQ1HA9Sc6JgTHXOiYy50cubpnGkR8d-vZUWpFPwPv6pf_Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2887114110</pqid></control><display><type>article</type><title>Hybrid-Order Anomaly Detection on Attributed Networks</title><source>IEEE Xplore (Online service)</source><creator>Huang, Ling ; Zhu, Ye ; Gao, Yuefang ; Liu, Tuo ; Chang, Chao ; Liu, Caixing ; Tang, Yong ; Wang, Chang-Dong</creator><creatorcontrib>Huang, Ling ; Zhu, Ye ; Gao, Yuefang ; Liu, Tuo ; Chang, Chao ; Liu, Caixing ; Tang, Yong ; Wang, Chang-Dong</creatorcontrib><description>Anomaly detection on attributed networks has received an increasing amount of attention in recent years. Despite the success, most of the existing methods only focus on detecting the abnormal nodes while fail to detect the abnormal subgraphs. In this paper, we define a new problem of hybrid-order anomaly detection on attributed networks, which aims to detect both of the abnormal nodes and subgraphs. To this end, a new deep learning model called Hybrid-Order Graph Attention Network (HO-GAT) is developed, which is able to simultaneously detect the abnormal nodes and motif instances in an attributed network. In order to model the mutual influence between nodes and motif instances, the learning procedures of the node representation and the motif instance representation are integrated into a unified graph attention network with a novel hybrid-order self-attention mechanism. After learning the node representation and the motif instance representation, two decoders are respectively designed to reconstruct the attribute information of the nodes and motif instances, and the hybrid-order topological structure among nodes and motif instances. And finally, the reconstruction errors are utilized as the abnormal score of nodes and motif instances respectively. Extensive experiments conducted on real-world datasets have confirmed the effectiveness of the HO-GAT method.</description><identifier>ISSN: 1041-4347</identifier><identifier>EISSN: 1558-2191</identifier><identifier>DOI: 10.1109/TKDE.2021.3117842</identifier><identifier>CODEN: ITKEEH</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Anomalies ; Anomaly detection ; attributed network ; autoencoder ; Computer science ; Decoders ; Decoding ; Deep learning ; graph attention network ; Graph theory ; hybrid-order ; Image edge detection ; Informatics ; Learning systems ; motif ; Networks ; Nodes ; Representations</subject><ispartof>IEEE transactions on knowledge and data engineering, 2023-12, Vol.35 (12), p.12249-12263</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-698aba6063cf8ee63c75ea574ce1ab44f9b9f37225fefe330ebba3c3a93542e83</citedby><cites>FETCH-LOGICAL-c293t-698aba6063cf8ee63c75ea574ce1ab44f9b9f37225fefe330ebba3c3a93542e83</cites><orcidid>0000-0003-4794-9961 ; 0000-0002-2821-1868 ; 0000-0002-9812-0742 ; 0000-0001-5972-559X ; 0000-0003-1139-4781 ; 0000-0001-5089-4637</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9560054$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Huang, Ling</creatorcontrib><creatorcontrib>Zhu, Ye</creatorcontrib><creatorcontrib>Gao, Yuefang</creatorcontrib><creatorcontrib>Liu, Tuo</creatorcontrib><creatorcontrib>Chang, Chao</creatorcontrib><creatorcontrib>Liu, Caixing</creatorcontrib><creatorcontrib>Tang, Yong</creatorcontrib><creatorcontrib>Wang, Chang-Dong</creatorcontrib><title>Hybrid-Order Anomaly Detection on Attributed Networks</title><title>IEEE transactions on knowledge and data engineering</title><addtitle>TKDE</addtitle><description>Anomaly detection on attributed networks has received an increasing amount of attention in recent years. Despite the success, most of the existing methods only focus on detecting the abnormal nodes while fail to detect the abnormal subgraphs. In this paper, we define a new problem of hybrid-order anomaly detection on attributed networks, which aims to detect both of the abnormal nodes and subgraphs. To this end, a new deep learning model called Hybrid-Order Graph Attention Network (HO-GAT) is developed, which is able to simultaneously detect the abnormal nodes and motif instances in an attributed network. In order to model the mutual influence between nodes and motif instances, the learning procedures of the node representation and the motif instance representation are integrated into a unified graph attention network with a novel hybrid-order self-attention mechanism. After learning the node representation and the motif instance representation, two decoders are respectively designed to reconstruct the attribute information of the nodes and motif instances, and the hybrid-order topological structure among nodes and motif instances. And finally, the reconstruction errors are utilized as the abnormal score of nodes and motif instances respectively. Extensive experiments conducted on real-world datasets have confirmed the effectiveness of the HO-GAT method.</description><subject>Anomalies</subject><subject>Anomaly detection</subject><subject>attributed network</subject><subject>autoencoder</subject><subject>Computer science</subject><subject>Decoders</subject><subject>Decoding</subject><subject>Deep learning</subject><subject>graph attention network</subject><subject>Graph theory</subject><subject>hybrid-order</subject><subject>Image edge detection</subject><subject>Informatics</subject><subject>Learning systems</subject><subject>motif</subject><subject>Networks</subject><subject>Nodes</subject><subject>Representations</subject><issn>1041-4347</issn><issn>1558-2191</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNo9kE9LAzEQxYMoWKsfQLwseN6ayZ_d5FjaasViL_Ucku0EtrbdmmSRfntTWoSBN4f3Zng_Qh6BjgCofll9TGcjRhmMOECtBLsiA5BSlQw0XOedCigFF_UtuYtxQylVtYIBkfOjC-26XIY1hmK873Z2eyymmLBJbbcv8oxTCq3rE66LT0y_XfiO9-TG223Eh4sOydfrbDWZl4vl2_tkvCgbpnkqK62ssxWteOMVYpZaopW1aBCsE8Jrpz2vGZMePXJO0TnLG241l4Kh4kPyfL57CN1PjzGZTdeHfX5pmFI1gMjlswvOriZ0MQb05hDanQ1HA9Sc6JgTHXOiYy50cubpnGkR8d-vZUWpFPwPv6pf_Q</recordid><startdate>20231201</startdate><enddate>20231201</enddate><creator>Huang, Ling</creator><creator>Zhu, Ye</creator><creator>Gao, Yuefang</creator><creator>Liu, Tuo</creator><creator>Chang, Chao</creator><creator>Liu, Caixing</creator><creator>Tang, Yong</creator><creator>Wang, Chang-Dong</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-4794-9961</orcidid><orcidid>https://orcid.org/0000-0002-2821-1868</orcidid><orcidid>https://orcid.org/0000-0002-9812-0742</orcidid><orcidid>https://orcid.org/0000-0001-5972-559X</orcidid><orcidid>https://orcid.org/0000-0003-1139-4781</orcidid><orcidid>https://orcid.org/0000-0001-5089-4637</orcidid></search><sort><creationdate>20231201</creationdate><title>Hybrid-Order Anomaly Detection on Attributed Networks</title><author>Huang, Ling ; Zhu, Ye ; Gao, Yuefang ; Liu, Tuo ; Chang, Chao ; Liu, Caixing ; Tang, Yong ; Wang, Chang-Dong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-698aba6063cf8ee63c75ea574ce1ab44f9b9f37225fefe330ebba3c3a93542e83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Anomalies</topic><topic>Anomaly detection</topic><topic>attributed network</topic><topic>autoencoder</topic><topic>Computer science</topic><topic>Decoders</topic><topic>Decoding</topic><topic>Deep learning</topic><topic>graph attention network</topic><topic>Graph theory</topic><topic>hybrid-order</topic><topic>Image edge detection</topic><topic>Informatics</topic><topic>Learning systems</topic><topic>motif</topic><topic>Networks</topic><topic>Nodes</topic><topic>Representations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Ling</creatorcontrib><creatorcontrib>Zhu, Ye</creatorcontrib><creatorcontrib>Gao, Yuefang</creatorcontrib><creatorcontrib>Liu, Tuo</creatorcontrib><creatorcontrib>Chang, Chao</creatorcontrib><creatorcontrib>Liu, Caixing</creatorcontrib><creatorcontrib>Tang, Yong</creatorcontrib><creatorcontrib>Wang, Chang-Dong</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library Online</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on knowledge and data engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Ling</au><au>Zhu, Ye</au><au>Gao, Yuefang</au><au>Liu, Tuo</au><au>Chang, Chao</au><au>Liu, Caixing</au><au>Tang, Yong</au><au>Wang, Chang-Dong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hybrid-Order Anomaly Detection on Attributed Networks</atitle><jtitle>IEEE transactions on knowledge and data engineering</jtitle><stitle>TKDE</stitle><date>2023-12-01</date><risdate>2023</risdate><volume>35</volume><issue>12</issue><spage>12249</spage><epage>12263</epage><pages>12249-12263</pages><issn>1041-4347</issn><eissn>1558-2191</eissn><coden>ITKEEH</coden><abstract>Anomaly detection on attributed networks has received an increasing amount of attention in recent years. Despite the success, most of the existing methods only focus on detecting the abnormal nodes while fail to detect the abnormal subgraphs. In this paper, we define a new problem of hybrid-order anomaly detection on attributed networks, which aims to detect both of the abnormal nodes and subgraphs. To this end, a new deep learning model called Hybrid-Order Graph Attention Network (HO-GAT) is developed, which is able to simultaneously detect the abnormal nodes and motif instances in an attributed network. In order to model the mutual influence between nodes and motif instances, the learning procedures of the node representation and the motif instance representation are integrated into a unified graph attention network with a novel hybrid-order self-attention mechanism. After learning the node representation and the motif instance representation, two decoders are respectively designed to reconstruct the attribute information of the nodes and motif instances, and the hybrid-order topological structure among nodes and motif instances. And finally, the reconstruction errors are utilized as the abnormal score of nodes and motif instances respectively. Extensive experiments conducted on real-world datasets have confirmed the effectiveness of the HO-GAT method.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TKDE.2021.3117842</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-4794-9961</orcidid><orcidid>https://orcid.org/0000-0002-2821-1868</orcidid><orcidid>https://orcid.org/0000-0002-9812-0742</orcidid><orcidid>https://orcid.org/0000-0001-5972-559X</orcidid><orcidid>https://orcid.org/0000-0003-1139-4781</orcidid><orcidid>https://orcid.org/0000-0001-5089-4637</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1041-4347 |
ispartof | IEEE transactions on knowledge and data engineering, 2023-12, Vol.35 (12), p.12249-12263 |
issn | 1041-4347 1558-2191 |
language | eng |
recordid | cdi_proquest_journals_2887114110 |
source | IEEE Xplore (Online service) |
subjects | Anomalies Anomaly detection attributed network autoencoder Computer science Decoders Decoding Deep learning graph attention network Graph theory hybrid-order Image edge detection Informatics Learning systems motif Networks Nodes Representations |
title | Hybrid-Order Anomaly Detection on Attributed Networks |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T03%3A22%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hybrid-Order%20Anomaly%20Detection%20on%20Attributed%20Networks&rft.jtitle=IEEE%20transactions%20on%20knowledge%20and%20data%20engineering&rft.au=Huang,%20Ling&rft.date=2023-12-01&rft.volume=35&rft.issue=12&rft.spage=12249&rft.epage=12263&rft.pages=12249-12263&rft.issn=1041-4347&rft.eissn=1558-2191&rft.coden=ITKEEH&rft_id=info:doi/10.1109/TKDE.2021.3117842&rft_dat=%3Cproquest_ieee_%3E2887114110%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c293t-698aba6063cf8ee63c75ea574ce1ab44f9b9f37225fefe330ebba3c3a93542e83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2887114110&rft_id=info:pmid/&rft_ieee_id=9560054&rfr_iscdi=true |