Loading…

Hybrid-Order Anomaly Detection on Attributed Networks

Anomaly detection on attributed networks has received an increasing amount of attention in recent years. Despite the success, most of the existing methods only focus on detecting the abnormal nodes while fail to detect the abnormal subgraphs. In this paper, we define a new problem of hybrid-order an...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on knowledge and data engineering 2023-12, Vol.35 (12), p.12249-12263
Main Authors: Huang, Ling, Zhu, Ye, Gao, Yuefang, Liu, Tuo, Chang, Chao, Liu, Caixing, Tang, Yong, Wang, Chang-Dong
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c293t-698aba6063cf8ee63c75ea574ce1ab44f9b9f37225fefe330ebba3c3a93542e83
cites cdi_FETCH-LOGICAL-c293t-698aba6063cf8ee63c75ea574ce1ab44f9b9f37225fefe330ebba3c3a93542e83
container_end_page 12263
container_issue 12
container_start_page 12249
container_title IEEE transactions on knowledge and data engineering
container_volume 35
creator Huang, Ling
Zhu, Ye
Gao, Yuefang
Liu, Tuo
Chang, Chao
Liu, Caixing
Tang, Yong
Wang, Chang-Dong
description Anomaly detection on attributed networks has received an increasing amount of attention in recent years. Despite the success, most of the existing methods only focus on detecting the abnormal nodes while fail to detect the abnormal subgraphs. In this paper, we define a new problem of hybrid-order anomaly detection on attributed networks, which aims to detect both of the abnormal nodes and subgraphs. To this end, a new deep learning model called Hybrid-Order Graph Attention Network (HO-GAT) is developed, which is able to simultaneously detect the abnormal nodes and motif instances in an attributed network. In order to model the mutual influence between nodes and motif instances, the learning procedures of the node representation and the motif instance representation are integrated into a unified graph attention network with a novel hybrid-order self-attention mechanism. After learning the node representation and the motif instance representation, two decoders are respectively designed to reconstruct the attribute information of the nodes and motif instances, and the hybrid-order topological structure among nodes and motif instances. And finally, the reconstruction errors are utilized as the abnormal score of nodes and motif instances respectively. Extensive experiments conducted on real-world datasets have confirmed the effectiveness of the HO-GAT method.
doi_str_mv 10.1109/TKDE.2021.3117842
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_2887114110</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9560054</ieee_id><sourcerecordid>2887114110</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-698aba6063cf8ee63c75ea574ce1ab44f9b9f37225fefe330ebba3c3a93542e83</originalsourceid><addsrcrecordid>eNo9kE9LAzEQxYMoWKsfQLwseN6ayZ_d5FjaasViL_Ucku0EtrbdmmSRfntTWoSBN4f3Zng_Qh6BjgCofll9TGcjRhmMOECtBLsiA5BSlQw0XOedCigFF_UtuYtxQylVtYIBkfOjC-26XIY1hmK873Z2eyymmLBJbbcv8oxTCq3rE66LT0y_XfiO9-TG223Eh4sOydfrbDWZl4vl2_tkvCgbpnkqK62ssxWteOMVYpZaopW1aBCsE8Jrpz2vGZMePXJO0TnLG241l4Kh4kPyfL57CN1PjzGZTdeHfX5pmFI1gMjlswvOriZ0MQb05hDanQ1HA9Sc6JgTHXOiYy50cubpnGkR8d-vZUWpFPwPv6pf_Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2887114110</pqid></control><display><type>article</type><title>Hybrid-Order Anomaly Detection on Attributed Networks</title><source>IEEE Xplore (Online service)</source><creator>Huang, Ling ; Zhu, Ye ; Gao, Yuefang ; Liu, Tuo ; Chang, Chao ; Liu, Caixing ; Tang, Yong ; Wang, Chang-Dong</creator><creatorcontrib>Huang, Ling ; Zhu, Ye ; Gao, Yuefang ; Liu, Tuo ; Chang, Chao ; Liu, Caixing ; Tang, Yong ; Wang, Chang-Dong</creatorcontrib><description>Anomaly detection on attributed networks has received an increasing amount of attention in recent years. Despite the success, most of the existing methods only focus on detecting the abnormal nodes while fail to detect the abnormal subgraphs. In this paper, we define a new problem of hybrid-order anomaly detection on attributed networks, which aims to detect both of the abnormal nodes and subgraphs. To this end, a new deep learning model called Hybrid-Order Graph Attention Network (HO-GAT) is developed, which is able to simultaneously detect the abnormal nodes and motif instances in an attributed network. In order to model the mutual influence between nodes and motif instances, the learning procedures of the node representation and the motif instance representation are integrated into a unified graph attention network with a novel hybrid-order self-attention mechanism. After learning the node representation and the motif instance representation, two decoders are respectively designed to reconstruct the attribute information of the nodes and motif instances, and the hybrid-order topological structure among nodes and motif instances. And finally, the reconstruction errors are utilized as the abnormal score of nodes and motif instances respectively. Extensive experiments conducted on real-world datasets have confirmed the effectiveness of the HO-GAT method.</description><identifier>ISSN: 1041-4347</identifier><identifier>EISSN: 1558-2191</identifier><identifier>DOI: 10.1109/TKDE.2021.3117842</identifier><identifier>CODEN: ITKEEH</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Anomalies ; Anomaly detection ; attributed network ; autoencoder ; Computer science ; Decoders ; Decoding ; Deep learning ; graph attention network ; Graph theory ; hybrid-order ; Image edge detection ; Informatics ; Learning systems ; motif ; Networks ; Nodes ; Representations</subject><ispartof>IEEE transactions on knowledge and data engineering, 2023-12, Vol.35 (12), p.12249-12263</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-698aba6063cf8ee63c75ea574ce1ab44f9b9f37225fefe330ebba3c3a93542e83</citedby><cites>FETCH-LOGICAL-c293t-698aba6063cf8ee63c75ea574ce1ab44f9b9f37225fefe330ebba3c3a93542e83</cites><orcidid>0000-0003-4794-9961 ; 0000-0002-2821-1868 ; 0000-0002-9812-0742 ; 0000-0001-5972-559X ; 0000-0003-1139-4781 ; 0000-0001-5089-4637</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9560054$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Huang, Ling</creatorcontrib><creatorcontrib>Zhu, Ye</creatorcontrib><creatorcontrib>Gao, Yuefang</creatorcontrib><creatorcontrib>Liu, Tuo</creatorcontrib><creatorcontrib>Chang, Chao</creatorcontrib><creatorcontrib>Liu, Caixing</creatorcontrib><creatorcontrib>Tang, Yong</creatorcontrib><creatorcontrib>Wang, Chang-Dong</creatorcontrib><title>Hybrid-Order Anomaly Detection on Attributed Networks</title><title>IEEE transactions on knowledge and data engineering</title><addtitle>TKDE</addtitle><description>Anomaly detection on attributed networks has received an increasing amount of attention in recent years. Despite the success, most of the existing methods only focus on detecting the abnormal nodes while fail to detect the abnormal subgraphs. In this paper, we define a new problem of hybrid-order anomaly detection on attributed networks, which aims to detect both of the abnormal nodes and subgraphs. To this end, a new deep learning model called Hybrid-Order Graph Attention Network (HO-GAT) is developed, which is able to simultaneously detect the abnormal nodes and motif instances in an attributed network. In order to model the mutual influence between nodes and motif instances, the learning procedures of the node representation and the motif instance representation are integrated into a unified graph attention network with a novel hybrid-order self-attention mechanism. After learning the node representation and the motif instance representation, two decoders are respectively designed to reconstruct the attribute information of the nodes and motif instances, and the hybrid-order topological structure among nodes and motif instances. And finally, the reconstruction errors are utilized as the abnormal score of nodes and motif instances respectively. Extensive experiments conducted on real-world datasets have confirmed the effectiveness of the HO-GAT method.</description><subject>Anomalies</subject><subject>Anomaly detection</subject><subject>attributed network</subject><subject>autoencoder</subject><subject>Computer science</subject><subject>Decoders</subject><subject>Decoding</subject><subject>Deep learning</subject><subject>graph attention network</subject><subject>Graph theory</subject><subject>hybrid-order</subject><subject>Image edge detection</subject><subject>Informatics</subject><subject>Learning systems</subject><subject>motif</subject><subject>Networks</subject><subject>Nodes</subject><subject>Representations</subject><issn>1041-4347</issn><issn>1558-2191</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNo9kE9LAzEQxYMoWKsfQLwseN6ayZ_d5FjaasViL_Ucku0EtrbdmmSRfntTWoSBN4f3Zng_Qh6BjgCofll9TGcjRhmMOECtBLsiA5BSlQw0XOedCigFF_UtuYtxQylVtYIBkfOjC-26XIY1hmK873Z2eyymmLBJbbcv8oxTCq3rE66LT0y_XfiO9-TG223Eh4sOydfrbDWZl4vl2_tkvCgbpnkqK62ssxWteOMVYpZaopW1aBCsE8Jrpz2vGZMePXJO0TnLG241l4Kh4kPyfL57CN1PjzGZTdeHfX5pmFI1gMjlswvOriZ0MQb05hDanQ1HA9Sc6JgTHXOiYy50cubpnGkR8d-vZUWpFPwPv6pf_Q</recordid><startdate>20231201</startdate><enddate>20231201</enddate><creator>Huang, Ling</creator><creator>Zhu, Ye</creator><creator>Gao, Yuefang</creator><creator>Liu, Tuo</creator><creator>Chang, Chao</creator><creator>Liu, Caixing</creator><creator>Tang, Yong</creator><creator>Wang, Chang-Dong</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-4794-9961</orcidid><orcidid>https://orcid.org/0000-0002-2821-1868</orcidid><orcidid>https://orcid.org/0000-0002-9812-0742</orcidid><orcidid>https://orcid.org/0000-0001-5972-559X</orcidid><orcidid>https://orcid.org/0000-0003-1139-4781</orcidid><orcidid>https://orcid.org/0000-0001-5089-4637</orcidid></search><sort><creationdate>20231201</creationdate><title>Hybrid-Order Anomaly Detection on Attributed Networks</title><author>Huang, Ling ; Zhu, Ye ; Gao, Yuefang ; Liu, Tuo ; Chang, Chao ; Liu, Caixing ; Tang, Yong ; Wang, Chang-Dong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-698aba6063cf8ee63c75ea574ce1ab44f9b9f37225fefe330ebba3c3a93542e83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Anomalies</topic><topic>Anomaly detection</topic><topic>attributed network</topic><topic>autoencoder</topic><topic>Computer science</topic><topic>Decoders</topic><topic>Decoding</topic><topic>Deep learning</topic><topic>graph attention network</topic><topic>Graph theory</topic><topic>hybrid-order</topic><topic>Image edge detection</topic><topic>Informatics</topic><topic>Learning systems</topic><topic>motif</topic><topic>Networks</topic><topic>Nodes</topic><topic>Representations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Ling</creatorcontrib><creatorcontrib>Zhu, Ye</creatorcontrib><creatorcontrib>Gao, Yuefang</creatorcontrib><creatorcontrib>Liu, Tuo</creatorcontrib><creatorcontrib>Chang, Chao</creatorcontrib><creatorcontrib>Liu, Caixing</creatorcontrib><creatorcontrib>Tang, Yong</creatorcontrib><creatorcontrib>Wang, Chang-Dong</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library Online</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on knowledge and data engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Ling</au><au>Zhu, Ye</au><au>Gao, Yuefang</au><au>Liu, Tuo</au><au>Chang, Chao</au><au>Liu, Caixing</au><au>Tang, Yong</au><au>Wang, Chang-Dong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hybrid-Order Anomaly Detection on Attributed Networks</atitle><jtitle>IEEE transactions on knowledge and data engineering</jtitle><stitle>TKDE</stitle><date>2023-12-01</date><risdate>2023</risdate><volume>35</volume><issue>12</issue><spage>12249</spage><epage>12263</epage><pages>12249-12263</pages><issn>1041-4347</issn><eissn>1558-2191</eissn><coden>ITKEEH</coden><abstract>Anomaly detection on attributed networks has received an increasing amount of attention in recent years. Despite the success, most of the existing methods only focus on detecting the abnormal nodes while fail to detect the abnormal subgraphs. In this paper, we define a new problem of hybrid-order anomaly detection on attributed networks, which aims to detect both of the abnormal nodes and subgraphs. To this end, a new deep learning model called Hybrid-Order Graph Attention Network (HO-GAT) is developed, which is able to simultaneously detect the abnormal nodes and motif instances in an attributed network. In order to model the mutual influence between nodes and motif instances, the learning procedures of the node representation and the motif instance representation are integrated into a unified graph attention network with a novel hybrid-order self-attention mechanism. After learning the node representation and the motif instance representation, two decoders are respectively designed to reconstruct the attribute information of the nodes and motif instances, and the hybrid-order topological structure among nodes and motif instances. And finally, the reconstruction errors are utilized as the abnormal score of nodes and motif instances respectively. Extensive experiments conducted on real-world datasets have confirmed the effectiveness of the HO-GAT method.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TKDE.2021.3117842</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-4794-9961</orcidid><orcidid>https://orcid.org/0000-0002-2821-1868</orcidid><orcidid>https://orcid.org/0000-0002-9812-0742</orcidid><orcidid>https://orcid.org/0000-0001-5972-559X</orcidid><orcidid>https://orcid.org/0000-0003-1139-4781</orcidid><orcidid>https://orcid.org/0000-0001-5089-4637</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1041-4347
ispartof IEEE transactions on knowledge and data engineering, 2023-12, Vol.35 (12), p.12249-12263
issn 1041-4347
1558-2191
language eng
recordid cdi_proquest_journals_2887114110
source IEEE Xplore (Online service)
subjects Anomalies
Anomaly detection
attributed network
autoencoder
Computer science
Decoders
Decoding
Deep learning
graph attention network
Graph theory
hybrid-order
Image edge detection
Informatics
Learning systems
motif
Networks
Nodes
Representations
title Hybrid-Order Anomaly Detection on Attributed Networks
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T03%3A22%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hybrid-Order%20Anomaly%20Detection%20on%20Attributed%20Networks&rft.jtitle=IEEE%20transactions%20on%20knowledge%20and%20data%20engineering&rft.au=Huang,%20Ling&rft.date=2023-12-01&rft.volume=35&rft.issue=12&rft.spage=12249&rft.epage=12263&rft.pages=12249-12263&rft.issn=1041-4347&rft.eissn=1558-2191&rft.coden=ITKEEH&rft_id=info:doi/10.1109/TKDE.2021.3117842&rft_dat=%3Cproquest_ieee_%3E2887114110%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c293t-698aba6063cf8ee63c75ea574ce1ab44f9b9f37225fefe330ebba3c3a93542e83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2887114110&rft_id=info:pmid/&rft_ieee_id=9560054&rfr_iscdi=true