Loading…
Mass‐Producible 3D Hair Structure‐Editable Silk‐Based Electronic Skin for Multiscenario Signal Monitoring and Emergency Alarming System
Structurally tunable electronic skin (e‐skin) is beneficial for advancing wearable electronics, prosthetics, and human‐machine interaction (HMI). However, the regulation of e‐skin by traditional nanostructure technology is complex and expensive, moreover, the nanostructure's poor deformability...
Saved in:
Published in: | Advanced functional materials 2023-11, Vol.33 (46) |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c267t-6bcd28e12cbded25389542c901a71ed4989475bdfdc5ef6d64e73390404c166d3 |
---|---|
cites | cdi_FETCH-LOGICAL-c267t-6bcd28e12cbded25389542c901a71ed4989475bdfdc5ef6d64e73390404c166d3 |
container_end_page | |
container_issue | 46 |
container_start_page | |
container_title | Advanced functional materials |
container_volume | 33 |
creator | Ge, Dan Mi, Qingling Gong, Ruixin Li, Shenghong Qin, Congcong Dong, Yanjuan Yu, Hou‐Yong Tam, Kam Chiu |
description | Structurally tunable electronic skin (e‐skin) is beneficial for advancing wearable electronics, prosthetics, and human‐machine interaction (HMI). However, the regulation of e‐skin by traditional nanostructure technology is complex and expensive, moreover, the nanostructure's poor deformability leads to small detection range and low sensitivity. Herein, inspired by the structure of skin‐hair and insect burr, a polypyrrole‐silk/glycerol plasticized silk fibroin (P‐silk/RG) e‐skin fabricated by a simple 3D biomimetic structural strategy is reported. Benefitting from the editability (length, position) of this structure, P‐silk/RG has a signal selectivity, long‐cilia P‐silk/RG demonstrates high sensitivity (respond to weak signal‐airflow), while the short‐cilia P‐silk/RG exhibits wide pressure detection range (0.5–200 g) and high cycle stability (8000 compressions). Therefore, different forms of P‐silk/RG are used in different scenarios (long‐cilia for monitoring breathing and coughing for motion detection and disease diagnosis, short‐cilia for pressure‐sensitive Morse code). Besides, P‐silk/RG exhibits good waterproof, editable conductive points and easy device integration, providing the basis for underwater information transmission, multibit coded command output, and early warning for emergency sports accidents and sedentary. Surprisingly, combining this structure with textile weaving can be mass‐produced. Obviously, this 3D biomimetic structure strategy endows e‐skin with editability and improved scene adaptability to provide a favorable way for mass production. |
doi_str_mv | 10.1002/adfm.202305328 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2887200137</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2887200137</sourcerecordid><originalsourceid>FETCH-LOGICAL-c267t-6bcd28e12cbded25389542c901a71ed4989475bdfdc5ef6d64e73390404c166d3</originalsourceid><addsrcrecordid>eNo9kE1LwzAYgIMoOKdXzwHPm_lok_Y453TChkIVvJU0SUe2tplJetjNPyD4G_0lpig7vV_P-_LyAHCN0RQjRG6FqtspQYSilJLsBIwww2xCEclOjzl-PwcX3m8RwpzTZAS-1sL7n8_vF2dVL03VaEjv4VIYB4vgehl6p-N4oUwQw7AwzS7Wd8JrBReNlsHZzkhY7EwHa-vgum-C8VJ3whkb8U0nGriOTLDOdBsourjXarfRnTzAWSNcO7SLgw-6vQRntWi8vvqPY_D2sHidLyer58en-Ww1kYTxMGGVVCTTmMhKaUVSmuVpQmSOsOBYqyTP8oSnlaqVTHXNFEs0pzRHCUokZkzRMbj5u7t39qPXPpRb27v4qS9JlnES9VAeqekfJZ313um63DvTCncoMSoH5eWgvDwqp7-d7Hld</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2887200137</pqid></control><display><type>article</type><title>Mass‐Producible 3D Hair Structure‐Editable Silk‐Based Electronic Skin for Multiscenario Signal Monitoring and Emergency Alarming System</title><source>Wiley</source><creator>Ge, Dan ; Mi, Qingling ; Gong, Ruixin ; Li, Shenghong ; Qin, Congcong ; Dong, Yanjuan ; Yu, Hou‐Yong ; Tam, Kam Chiu</creator><creatorcontrib>Ge, Dan ; Mi, Qingling ; Gong, Ruixin ; Li, Shenghong ; Qin, Congcong ; Dong, Yanjuan ; Yu, Hou‐Yong ; Tam, Kam Chiu</creatorcontrib><description>Structurally tunable electronic skin (e‐skin) is beneficial for advancing wearable electronics, prosthetics, and human‐machine interaction (HMI). However, the regulation of e‐skin by traditional nanostructure technology is complex and expensive, moreover, the nanostructure's poor deformability leads to small detection range and low sensitivity. Herein, inspired by the structure of skin‐hair and insect burr, a polypyrrole‐silk/glycerol plasticized silk fibroin (P‐silk/RG) e‐skin fabricated by a simple 3D biomimetic structural strategy is reported. Benefitting from the editability (length, position) of this structure, P‐silk/RG has a signal selectivity, long‐cilia P‐silk/RG demonstrates high sensitivity (respond to weak signal‐airflow), while the short‐cilia P‐silk/RG exhibits wide pressure detection range (0.5–200 g) and high cycle stability (8000 compressions). Therefore, different forms of P‐silk/RG are used in different scenarios (long‐cilia for monitoring breathing and coughing for motion detection and disease diagnosis, short‐cilia for pressure‐sensitive Morse code). Besides, P‐silk/RG exhibits good waterproof, editable conductive points and easy device integration, providing the basis for underwater information transmission, multibit coded command output, and early warning for emergency sports accidents and sedentary. Surprisingly, combining this structure with textile weaving can be mass‐produced. Obviously, this 3D biomimetic structure strategy endows e‐skin with editability and improved scene adaptability to provide a favorable way for mass production.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202305328</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Air flow ; Biomimetics ; Emergency warning programs ; Formability ; Insects ; Mass production ; Materials science ; Morse code ; Motion perception ; Nanostructure ; Polypyrroles ; Prostheses ; Sensitivity ; Signal monitoring ; Silk fibroin</subject><ispartof>Advanced functional materials, 2023-11, Vol.33 (46)</ispartof><rights>2023 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c267t-6bcd28e12cbded25389542c901a71ed4989475bdfdc5ef6d64e73390404c166d3</citedby><cites>FETCH-LOGICAL-c267t-6bcd28e12cbded25389542c901a71ed4989475bdfdc5ef6d64e73390404c166d3</cites><orcidid>0000-0002-6543-5924</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Ge, Dan</creatorcontrib><creatorcontrib>Mi, Qingling</creatorcontrib><creatorcontrib>Gong, Ruixin</creatorcontrib><creatorcontrib>Li, Shenghong</creatorcontrib><creatorcontrib>Qin, Congcong</creatorcontrib><creatorcontrib>Dong, Yanjuan</creatorcontrib><creatorcontrib>Yu, Hou‐Yong</creatorcontrib><creatorcontrib>Tam, Kam Chiu</creatorcontrib><title>Mass‐Producible 3D Hair Structure‐Editable Silk‐Based Electronic Skin for Multiscenario Signal Monitoring and Emergency Alarming System</title><title>Advanced functional materials</title><description>Structurally tunable electronic skin (e‐skin) is beneficial for advancing wearable electronics, prosthetics, and human‐machine interaction (HMI). However, the regulation of e‐skin by traditional nanostructure technology is complex and expensive, moreover, the nanostructure's poor deformability leads to small detection range and low sensitivity. Herein, inspired by the structure of skin‐hair and insect burr, a polypyrrole‐silk/glycerol plasticized silk fibroin (P‐silk/RG) e‐skin fabricated by a simple 3D biomimetic structural strategy is reported. Benefitting from the editability (length, position) of this structure, P‐silk/RG has a signal selectivity, long‐cilia P‐silk/RG demonstrates high sensitivity (respond to weak signal‐airflow), while the short‐cilia P‐silk/RG exhibits wide pressure detection range (0.5–200 g) and high cycle stability (8000 compressions). Therefore, different forms of P‐silk/RG are used in different scenarios (long‐cilia for monitoring breathing and coughing for motion detection and disease diagnosis, short‐cilia for pressure‐sensitive Morse code). Besides, P‐silk/RG exhibits good waterproof, editable conductive points and easy device integration, providing the basis for underwater information transmission, multibit coded command output, and early warning for emergency sports accidents and sedentary. Surprisingly, combining this structure with textile weaving can be mass‐produced. Obviously, this 3D biomimetic structure strategy endows e‐skin with editability and improved scene adaptability to provide a favorable way for mass production.</description><subject>Air flow</subject><subject>Biomimetics</subject><subject>Emergency warning programs</subject><subject>Formability</subject><subject>Insects</subject><subject>Mass production</subject><subject>Materials science</subject><subject>Morse code</subject><subject>Motion perception</subject><subject>Nanostructure</subject><subject>Polypyrroles</subject><subject>Prostheses</subject><subject>Sensitivity</subject><subject>Signal monitoring</subject><subject>Silk fibroin</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNo9kE1LwzAYgIMoOKdXzwHPm_lok_Y453TChkIVvJU0SUe2tplJetjNPyD4G_0lpig7vV_P-_LyAHCN0RQjRG6FqtspQYSilJLsBIwww2xCEclOjzl-PwcX3m8RwpzTZAS-1sL7n8_vF2dVL03VaEjv4VIYB4vgehl6p-N4oUwQw7AwzS7Wd8JrBReNlsHZzkhY7EwHa-vgum-C8VJ3whkb8U0nGriOTLDOdBsourjXarfRnTzAWSNcO7SLgw-6vQRntWi8vvqPY_D2sHidLyer58en-Ww1kYTxMGGVVCTTmMhKaUVSmuVpQmSOsOBYqyTP8oSnlaqVTHXNFEs0pzRHCUokZkzRMbj5u7t39qPXPpRb27v4qS9JlnES9VAeqekfJZ313um63DvTCncoMSoH5eWgvDwqp7-d7Hld</recordid><startdate>20231101</startdate><enddate>20231101</enddate><creator>Ge, Dan</creator><creator>Mi, Qingling</creator><creator>Gong, Ruixin</creator><creator>Li, Shenghong</creator><creator>Qin, Congcong</creator><creator>Dong, Yanjuan</creator><creator>Yu, Hou‐Yong</creator><creator>Tam, Kam Chiu</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-6543-5924</orcidid></search><sort><creationdate>20231101</creationdate><title>Mass‐Producible 3D Hair Structure‐Editable Silk‐Based Electronic Skin for Multiscenario Signal Monitoring and Emergency Alarming System</title><author>Ge, Dan ; Mi, Qingling ; Gong, Ruixin ; Li, Shenghong ; Qin, Congcong ; Dong, Yanjuan ; Yu, Hou‐Yong ; Tam, Kam Chiu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c267t-6bcd28e12cbded25389542c901a71ed4989475bdfdc5ef6d64e73390404c166d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Air flow</topic><topic>Biomimetics</topic><topic>Emergency warning programs</topic><topic>Formability</topic><topic>Insects</topic><topic>Mass production</topic><topic>Materials science</topic><topic>Morse code</topic><topic>Motion perception</topic><topic>Nanostructure</topic><topic>Polypyrroles</topic><topic>Prostheses</topic><topic>Sensitivity</topic><topic>Signal monitoring</topic><topic>Silk fibroin</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ge, Dan</creatorcontrib><creatorcontrib>Mi, Qingling</creatorcontrib><creatorcontrib>Gong, Ruixin</creatorcontrib><creatorcontrib>Li, Shenghong</creatorcontrib><creatorcontrib>Qin, Congcong</creatorcontrib><creatorcontrib>Dong, Yanjuan</creatorcontrib><creatorcontrib>Yu, Hou‐Yong</creatorcontrib><creatorcontrib>Tam, Kam Chiu</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ge, Dan</au><au>Mi, Qingling</au><au>Gong, Ruixin</au><au>Li, Shenghong</au><au>Qin, Congcong</au><au>Dong, Yanjuan</au><au>Yu, Hou‐Yong</au><au>Tam, Kam Chiu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mass‐Producible 3D Hair Structure‐Editable Silk‐Based Electronic Skin for Multiscenario Signal Monitoring and Emergency Alarming System</atitle><jtitle>Advanced functional materials</jtitle><date>2023-11-01</date><risdate>2023</risdate><volume>33</volume><issue>46</issue><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Structurally tunable electronic skin (e‐skin) is beneficial for advancing wearable electronics, prosthetics, and human‐machine interaction (HMI). However, the regulation of e‐skin by traditional nanostructure technology is complex and expensive, moreover, the nanostructure's poor deformability leads to small detection range and low sensitivity. Herein, inspired by the structure of skin‐hair and insect burr, a polypyrrole‐silk/glycerol plasticized silk fibroin (P‐silk/RG) e‐skin fabricated by a simple 3D biomimetic structural strategy is reported. Benefitting from the editability (length, position) of this structure, P‐silk/RG has a signal selectivity, long‐cilia P‐silk/RG demonstrates high sensitivity (respond to weak signal‐airflow), while the short‐cilia P‐silk/RG exhibits wide pressure detection range (0.5–200 g) and high cycle stability (8000 compressions). Therefore, different forms of P‐silk/RG are used in different scenarios (long‐cilia for monitoring breathing and coughing for motion detection and disease diagnosis, short‐cilia for pressure‐sensitive Morse code). Besides, P‐silk/RG exhibits good waterproof, editable conductive points and easy device integration, providing the basis for underwater information transmission, multibit coded command output, and early warning for emergency sports accidents and sedentary. Surprisingly, combining this structure with textile weaving can be mass‐produced. Obviously, this 3D biomimetic structure strategy endows e‐skin with editability and improved scene adaptability to provide a favorable way for mass production.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.202305328</doi><orcidid>https://orcid.org/0000-0002-6543-5924</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1616-301X |
ispartof | Advanced functional materials, 2023-11, Vol.33 (46) |
issn | 1616-301X 1616-3028 |
language | eng |
recordid | cdi_proquest_journals_2887200137 |
source | Wiley |
subjects | Air flow Biomimetics Emergency warning programs Formability Insects Mass production Materials science Morse code Motion perception Nanostructure Polypyrroles Prostheses Sensitivity Signal monitoring Silk fibroin |
title | Mass‐Producible 3D Hair Structure‐Editable Silk‐Based Electronic Skin for Multiscenario Signal Monitoring and Emergency Alarming System |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T14%3A36%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mass%E2%80%90Producible%203D%20Hair%20Structure%E2%80%90Editable%20Silk%E2%80%90Based%20Electronic%20Skin%20for%20Multiscenario%20Signal%20Monitoring%20and%20Emergency%20Alarming%20System&rft.jtitle=Advanced%20functional%20materials&rft.au=Ge,%20Dan&rft.date=2023-11-01&rft.volume=33&rft.issue=46&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202305328&rft_dat=%3Cproquest_cross%3E2887200137%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c267t-6bcd28e12cbded25389542c901a71ed4989475bdfdc5ef6d64e73390404c166d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2887200137&rft_id=info:pmid/&rfr_iscdi=true |