Loading…

Mass‐Producible 3D Hair Structure‐Editable Silk‐Based Electronic Skin for Multiscenario Signal Monitoring and Emergency Alarming System

Structurally tunable electronic skin (e‐skin) is beneficial for advancing wearable electronics, prosthetics, and human‐machine interaction (HMI). However, the regulation of e‐skin by traditional nanostructure technology is complex and expensive, moreover, the nanostructure's poor deformability...

Full description

Saved in:
Bibliographic Details
Published in:Advanced functional materials 2023-11, Vol.33 (46)
Main Authors: Ge, Dan, Mi, Qingling, Gong, Ruixin, Li, Shenghong, Qin, Congcong, Dong, Yanjuan, Yu, Hou‐Yong, Tam, Kam Chiu
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c267t-6bcd28e12cbded25389542c901a71ed4989475bdfdc5ef6d64e73390404c166d3
cites cdi_FETCH-LOGICAL-c267t-6bcd28e12cbded25389542c901a71ed4989475bdfdc5ef6d64e73390404c166d3
container_end_page
container_issue 46
container_start_page
container_title Advanced functional materials
container_volume 33
creator Ge, Dan
Mi, Qingling
Gong, Ruixin
Li, Shenghong
Qin, Congcong
Dong, Yanjuan
Yu, Hou‐Yong
Tam, Kam Chiu
description Structurally tunable electronic skin (e‐skin) is beneficial for advancing wearable electronics, prosthetics, and human‐machine interaction (HMI). However, the regulation of e‐skin by traditional nanostructure technology is complex and expensive, moreover, the nanostructure's poor deformability leads to small detection range and low sensitivity. Herein, inspired by the structure of skin‐hair and insect burr, a polypyrrole‐silk/glycerol plasticized silk fibroin (P‐silk/RG) e‐skin fabricated by a simple 3D biomimetic structural strategy is reported. Benefitting from the editability (length, position) of this structure, P‐silk/RG has a signal selectivity, long‐cilia P‐silk/RG demonstrates high sensitivity (respond to weak signal‐airflow), while the short‐cilia P‐silk/RG exhibits wide pressure detection range (0.5–200 g) and high cycle stability (8000 compressions). Therefore, different forms of P‐silk/RG are used in different scenarios (long‐cilia for monitoring breathing and coughing for motion detection and disease diagnosis, short‐cilia for pressure‐sensitive Morse code). Besides, P‐silk/RG exhibits good waterproof, editable conductive points and easy device integration, providing the basis for underwater information transmission, multibit coded command output, and early warning for emergency sports accidents and sedentary. Surprisingly, combining this structure with textile weaving can be mass‐produced. Obviously, this 3D biomimetic structure strategy endows e‐skin with editability and improved scene adaptability to provide a favorable way for mass production.
doi_str_mv 10.1002/adfm.202305328
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2887200137</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2887200137</sourcerecordid><originalsourceid>FETCH-LOGICAL-c267t-6bcd28e12cbded25389542c901a71ed4989475bdfdc5ef6d64e73390404c166d3</originalsourceid><addsrcrecordid>eNo9kE1LwzAYgIMoOKdXzwHPm_lok_Y453TChkIVvJU0SUe2tplJetjNPyD4G_0lpig7vV_P-_LyAHCN0RQjRG6FqtspQYSilJLsBIwww2xCEclOjzl-PwcX3m8RwpzTZAS-1sL7n8_vF2dVL03VaEjv4VIYB4vgehl6p-N4oUwQw7AwzS7Wd8JrBReNlsHZzkhY7EwHa-vgum-C8VJ3whkb8U0nGriOTLDOdBsourjXarfRnTzAWSNcO7SLgw-6vQRntWi8vvqPY_D2sHidLyer58en-Ww1kYTxMGGVVCTTmMhKaUVSmuVpQmSOsOBYqyTP8oSnlaqVTHXNFEs0pzRHCUokZkzRMbj5u7t39qPXPpRb27v4qS9JlnES9VAeqekfJZ313um63DvTCncoMSoH5eWgvDwqp7-d7Hld</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2887200137</pqid></control><display><type>article</type><title>Mass‐Producible 3D Hair Structure‐Editable Silk‐Based Electronic Skin for Multiscenario Signal Monitoring and Emergency Alarming System</title><source>Wiley</source><creator>Ge, Dan ; Mi, Qingling ; Gong, Ruixin ; Li, Shenghong ; Qin, Congcong ; Dong, Yanjuan ; Yu, Hou‐Yong ; Tam, Kam Chiu</creator><creatorcontrib>Ge, Dan ; Mi, Qingling ; Gong, Ruixin ; Li, Shenghong ; Qin, Congcong ; Dong, Yanjuan ; Yu, Hou‐Yong ; Tam, Kam Chiu</creatorcontrib><description>Structurally tunable electronic skin (e‐skin) is beneficial for advancing wearable electronics, prosthetics, and human‐machine interaction (HMI). However, the regulation of e‐skin by traditional nanostructure technology is complex and expensive, moreover, the nanostructure's poor deformability leads to small detection range and low sensitivity. Herein, inspired by the structure of skin‐hair and insect burr, a polypyrrole‐silk/glycerol plasticized silk fibroin (P‐silk/RG) e‐skin fabricated by a simple 3D biomimetic structural strategy is reported. Benefitting from the editability (length, position) of this structure, P‐silk/RG has a signal selectivity, long‐cilia P‐silk/RG demonstrates high sensitivity (respond to weak signal‐airflow), while the short‐cilia P‐silk/RG exhibits wide pressure detection range (0.5–200 g) and high cycle stability (8000 compressions). Therefore, different forms of P‐silk/RG are used in different scenarios (long‐cilia for monitoring breathing and coughing for motion detection and disease diagnosis, short‐cilia for pressure‐sensitive Morse code). Besides, P‐silk/RG exhibits good waterproof, editable conductive points and easy device integration, providing the basis for underwater information transmission, multibit coded command output, and early warning for emergency sports accidents and sedentary. Surprisingly, combining this structure with textile weaving can be mass‐produced. Obviously, this 3D biomimetic structure strategy endows e‐skin with editability and improved scene adaptability to provide a favorable way for mass production.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202305328</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Air flow ; Biomimetics ; Emergency warning programs ; Formability ; Insects ; Mass production ; Materials science ; Morse code ; Motion perception ; Nanostructure ; Polypyrroles ; Prostheses ; Sensitivity ; Signal monitoring ; Silk fibroin</subject><ispartof>Advanced functional materials, 2023-11, Vol.33 (46)</ispartof><rights>2023 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c267t-6bcd28e12cbded25389542c901a71ed4989475bdfdc5ef6d64e73390404c166d3</citedby><cites>FETCH-LOGICAL-c267t-6bcd28e12cbded25389542c901a71ed4989475bdfdc5ef6d64e73390404c166d3</cites><orcidid>0000-0002-6543-5924</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Ge, Dan</creatorcontrib><creatorcontrib>Mi, Qingling</creatorcontrib><creatorcontrib>Gong, Ruixin</creatorcontrib><creatorcontrib>Li, Shenghong</creatorcontrib><creatorcontrib>Qin, Congcong</creatorcontrib><creatorcontrib>Dong, Yanjuan</creatorcontrib><creatorcontrib>Yu, Hou‐Yong</creatorcontrib><creatorcontrib>Tam, Kam Chiu</creatorcontrib><title>Mass‐Producible 3D Hair Structure‐Editable Silk‐Based Electronic Skin for Multiscenario Signal Monitoring and Emergency Alarming System</title><title>Advanced functional materials</title><description>Structurally tunable electronic skin (e‐skin) is beneficial for advancing wearable electronics, prosthetics, and human‐machine interaction (HMI). However, the regulation of e‐skin by traditional nanostructure technology is complex and expensive, moreover, the nanostructure's poor deformability leads to small detection range and low sensitivity. Herein, inspired by the structure of skin‐hair and insect burr, a polypyrrole‐silk/glycerol plasticized silk fibroin (P‐silk/RG) e‐skin fabricated by a simple 3D biomimetic structural strategy is reported. Benefitting from the editability (length, position) of this structure, P‐silk/RG has a signal selectivity, long‐cilia P‐silk/RG demonstrates high sensitivity (respond to weak signal‐airflow), while the short‐cilia P‐silk/RG exhibits wide pressure detection range (0.5–200 g) and high cycle stability (8000 compressions). Therefore, different forms of P‐silk/RG are used in different scenarios (long‐cilia for monitoring breathing and coughing for motion detection and disease diagnosis, short‐cilia for pressure‐sensitive Morse code). Besides, P‐silk/RG exhibits good waterproof, editable conductive points and easy device integration, providing the basis for underwater information transmission, multibit coded command output, and early warning for emergency sports accidents and sedentary. Surprisingly, combining this structure with textile weaving can be mass‐produced. Obviously, this 3D biomimetic structure strategy endows e‐skin with editability and improved scene adaptability to provide a favorable way for mass production.</description><subject>Air flow</subject><subject>Biomimetics</subject><subject>Emergency warning programs</subject><subject>Formability</subject><subject>Insects</subject><subject>Mass production</subject><subject>Materials science</subject><subject>Morse code</subject><subject>Motion perception</subject><subject>Nanostructure</subject><subject>Polypyrroles</subject><subject>Prostheses</subject><subject>Sensitivity</subject><subject>Signal monitoring</subject><subject>Silk fibroin</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNo9kE1LwzAYgIMoOKdXzwHPm_lok_Y453TChkIVvJU0SUe2tplJetjNPyD4G_0lpig7vV_P-_LyAHCN0RQjRG6FqtspQYSilJLsBIwww2xCEclOjzl-PwcX3m8RwpzTZAS-1sL7n8_vF2dVL03VaEjv4VIYB4vgehl6p-N4oUwQw7AwzS7Wd8JrBReNlsHZzkhY7EwHa-vgum-C8VJ3whkb8U0nGriOTLDOdBsourjXarfRnTzAWSNcO7SLgw-6vQRntWi8vvqPY_D2sHidLyer58en-Ww1kYTxMGGVVCTTmMhKaUVSmuVpQmSOsOBYqyTP8oSnlaqVTHXNFEs0pzRHCUokZkzRMbj5u7t39qPXPpRb27v4qS9JlnES9VAeqekfJZ313um63DvTCncoMSoH5eWgvDwqp7-d7Hld</recordid><startdate>20231101</startdate><enddate>20231101</enddate><creator>Ge, Dan</creator><creator>Mi, Qingling</creator><creator>Gong, Ruixin</creator><creator>Li, Shenghong</creator><creator>Qin, Congcong</creator><creator>Dong, Yanjuan</creator><creator>Yu, Hou‐Yong</creator><creator>Tam, Kam Chiu</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-6543-5924</orcidid></search><sort><creationdate>20231101</creationdate><title>Mass‐Producible 3D Hair Structure‐Editable Silk‐Based Electronic Skin for Multiscenario Signal Monitoring and Emergency Alarming System</title><author>Ge, Dan ; Mi, Qingling ; Gong, Ruixin ; Li, Shenghong ; Qin, Congcong ; Dong, Yanjuan ; Yu, Hou‐Yong ; Tam, Kam Chiu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c267t-6bcd28e12cbded25389542c901a71ed4989475bdfdc5ef6d64e73390404c166d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Air flow</topic><topic>Biomimetics</topic><topic>Emergency warning programs</topic><topic>Formability</topic><topic>Insects</topic><topic>Mass production</topic><topic>Materials science</topic><topic>Morse code</topic><topic>Motion perception</topic><topic>Nanostructure</topic><topic>Polypyrroles</topic><topic>Prostheses</topic><topic>Sensitivity</topic><topic>Signal monitoring</topic><topic>Silk fibroin</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ge, Dan</creatorcontrib><creatorcontrib>Mi, Qingling</creatorcontrib><creatorcontrib>Gong, Ruixin</creatorcontrib><creatorcontrib>Li, Shenghong</creatorcontrib><creatorcontrib>Qin, Congcong</creatorcontrib><creatorcontrib>Dong, Yanjuan</creatorcontrib><creatorcontrib>Yu, Hou‐Yong</creatorcontrib><creatorcontrib>Tam, Kam Chiu</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ge, Dan</au><au>Mi, Qingling</au><au>Gong, Ruixin</au><au>Li, Shenghong</au><au>Qin, Congcong</au><au>Dong, Yanjuan</au><au>Yu, Hou‐Yong</au><au>Tam, Kam Chiu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mass‐Producible 3D Hair Structure‐Editable Silk‐Based Electronic Skin for Multiscenario Signal Monitoring and Emergency Alarming System</atitle><jtitle>Advanced functional materials</jtitle><date>2023-11-01</date><risdate>2023</risdate><volume>33</volume><issue>46</issue><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Structurally tunable electronic skin (e‐skin) is beneficial for advancing wearable electronics, prosthetics, and human‐machine interaction (HMI). However, the regulation of e‐skin by traditional nanostructure technology is complex and expensive, moreover, the nanostructure's poor deformability leads to small detection range and low sensitivity. Herein, inspired by the structure of skin‐hair and insect burr, a polypyrrole‐silk/glycerol plasticized silk fibroin (P‐silk/RG) e‐skin fabricated by a simple 3D biomimetic structural strategy is reported. Benefitting from the editability (length, position) of this structure, P‐silk/RG has a signal selectivity, long‐cilia P‐silk/RG demonstrates high sensitivity (respond to weak signal‐airflow), while the short‐cilia P‐silk/RG exhibits wide pressure detection range (0.5–200 g) and high cycle stability (8000 compressions). Therefore, different forms of P‐silk/RG are used in different scenarios (long‐cilia for monitoring breathing and coughing for motion detection and disease diagnosis, short‐cilia for pressure‐sensitive Morse code). Besides, P‐silk/RG exhibits good waterproof, editable conductive points and easy device integration, providing the basis for underwater information transmission, multibit coded command output, and early warning for emergency sports accidents and sedentary. Surprisingly, combining this structure with textile weaving can be mass‐produced. Obviously, this 3D biomimetic structure strategy endows e‐skin with editability and improved scene adaptability to provide a favorable way for mass production.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.202305328</doi><orcidid>https://orcid.org/0000-0002-6543-5924</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1616-301X
ispartof Advanced functional materials, 2023-11, Vol.33 (46)
issn 1616-301X
1616-3028
language eng
recordid cdi_proquest_journals_2887200137
source Wiley
subjects Air flow
Biomimetics
Emergency warning programs
Formability
Insects
Mass production
Materials science
Morse code
Motion perception
Nanostructure
Polypyrroles
Prostheses
Sensitivity
Signal monitoring
Silk fibroin
title Mass‐Producible 3D Hair Structure‐Editable Silk‐Based Electronic Skin for Multiscenario Signal Monitoring and Emergency Alarming System
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T14%3A36%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mass%E2%80%90Producible%203D%20Hair%20Structure%E2%80%90Editable%20Silk%E2%80%90Based%20Electronic%20Skin%20for%20Multiscenario%20Signal%20Monitoring%20and%20Emergency%20Alarming%20System&rft.jtitle=Advanced%20functional%20materials&rft.au=Ge,%20Dan&rft.date=2023-11-01&rft.volume=33&rft.issue=46&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202305328&rft_dat=%3Cproquest_cross%3E2887200137%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c267t-6bcd28e12cbded25389542c901a71ed4989475bdfdc5ef6d64e73390404c166d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2887200137&rft_id=info:pmid/&rfr_iscdi=true