Loading…

Unraveling the Solvation Structure and Electrolyte Interface through Carbonyl Chemistry for Durable and Dendrite‐Free Zn Anode

Aqueous Zn ion batteries are appealing systems owing to their safety, low cost, and environmental friendliness; however, their practical applicability is impeded by the growth of Zn dendrites and side reactions. Herein, a dual‐functional electrolyte additive, namely acetylacetone (AT) is utilized fo...

Full description

Saved in:
Bibliographic Details
Published in:Advanced functional materials 2023-11, Vol.33 (46)
Main Authors: Cao, Heng, Zhang, Xiaoqin, Xie, Bin, Huang, Xiaomin, Xie, Fengyu, Huo, Yu, Zheng, Qiaoji, Zhao, Ruyi, Hu, Qiang, Kang, Ling, Liu, Shude, Lin, Dunmin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c267t-6233953bdb4aa313824d2539ee54803d06e841aeedbc4fb8e0fdd540c7f7eb943
cites cdi_FETCH-LOGICAL-c267t-6233953bdb4aa313824d2539ee54803d06e841aeedbc4fb8e0fdd540c7f7eb943
container_end_page
container_issue 46
container_start_page
container_title Advanced functional materials
container_volume 33
creator Cao, Heng
Zhang, Xiaoqin
Xie, Bin
Huang, Xiaomin
Xie, Fengyu
Huo, Yu
Zheng, Qiaoji
Zhao, Ruyi
Hu, Qiang
Kang, Ling
Liu, Shude
Lin, Dunmin
description Aqueous Zn ion batteries are appealing systems owing to their safety, low cost, and environmental friendliness; however, their practical applicability is impeded by the growth of Zn dendrites and side reactions. Herein, a dual‐functional electrolyte additive, namely acetylacetone (AT) is utilized for the simultaneous regulation of the solventized structure and anode–electrolyte interface (AEI) to achieve a durable, dendrite‐free Zn anode. Theoretical calculations and experimental characterizations reveal that the AT molecule can be adsorbed onto Zn metal surface to reconstruct the AEI and allow for the primordial desolvation of [Zn(H 2 O) 6 ] 2+ at locations away from the surface of the Zn anode during deposition, which is attributed to the strong polarity of the carbonyl functional group. In addition, the two carbonyls of AT can replace two H 2 O molecules in the primary solventized structure of Zn 2+ to reduce the number of active H 2 O molecules, efficiently suppressing Zn dendrite growth and detrimental reactions. As a proof of concept, a Zn//Cu cell is constructed in ZnSO 4 containing 3 vol.% AT electrolyte, delivering stable cycling over 1800 cycles while maintaining a high Coulombic efficiency of 99.74%. This study provides a practical approach for inhibiting dendrite growth and side reactions by harnessing carbonyl chemistry.
doi_str_mv 10.1002/adfm.202305683
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2887200209</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2887200209</sourcerecordid><originalsourceid>FETCH-LOGICAL-c267t-6233953bdb4aa313824d2539ee54803d06e841aeedbc4fb8e0fdd540c7f7eb943</originalsourceid><addsrcrecordid>eNo9kMtKw0AYhQdRsFa3rgdct84ll8mypK0WCi5qQdyESeZPm5LO1D-TQnZ9BJ_RJzGl4uqcxbnAR8gjZ2POmHjWptyPBROShZGSV2TAIx6NJBPq-t_zj1ty1zQ7xngcy2BATmuL-gh1ZTfUb4GuXH3UvnKWrjy2hW8RqLaGzmooPLq680AX1gOWuoC-ga7dbGmqMXe2q2m6hX3VeOxo6ZBOW9R5fRmYgjVYefg5fc8RgH5aOrHOwD25KXXdwMOfDsl6PntPX0fLt5dFOlmOChHFfhQJKZNQ5iYPtJZcKhEYEcoEIAwUk4ZFoAKuAUxeBGWugJXGhAEr4jKGPAnkkDxddg_ovlpofLZzLdr-MhNKxaInyJI-Nb6kCnRNg1BmB6z2GruMs-xMOTtTzv4py18PSHNs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2887200209</pqid></control><display><type>article</type><title>Unraveling the Solvation Structure and Electrolyte Interface through Carbonyl Chemistry for Durable and Dendrite‐Free Zn Anode</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Cao, Heng ; Zhang, Xiaoqin ; Xie, Bin ; Huang, Xiaomin ; Xie, Fengyu ; Huo, Yu ; Zheng, Qiaoji ; Zhao, Ruyi ; Hu, Qiang ; Kang, Ling ; Liu, Shude ; Lin, Dunmin</creator><creatorcontrib>Cao, Heng ; Zhang, Xiaoqin ; Xie, Bin ; Huang, Xiaomin ; Xie, Fengyu ; Huo, Yu ; Zheng, Qiaoji ; Zhao, Ruyi ; Hu, Qiang ; Kang, Ling ; Liu, Shude ; Lin, Dunmin</creatorcontrib><description>Aqueous Zn ion batteries are appealing systems owing to their safety, low cost, and environmental friendliness; however, their practical applicability is impeded by the growth of Zn dendrites and side reactions. Herein, a dual‐functional electrolyte additive, namely acetylacetone (AT) is utilized for the simultaneous regulation of the solventized structure and anode–electrolyte interface (AEI) to achieve a durable, dendrite‐free Zn anode. Theoretical calculations and experimental characterizations reveal that the AT molecule can be adsorbed onto Zn metal surface to reconstruct the AEI and allow for the primordial desolvation of [Zn(H 2 O) 6 ] 2+ at locations away from the surface of the Zn anode during deposition, which is attributed to the strong polarity of the carbonyl functional group. In addition, the two carbonyls of AT can replace two H 2 O molecules in the primary solventized structure of Zn 2+ to reduce the number of active H 2 O molecules, efficiently suppressing Zn dendrite growth and detrimental reactions. As a proof of concept, a Zn//Cu cell is constructed in ZnSO 4 containing 3 vol.% AT electrolyte, delivering stable cycling over 1800 cycles while maintaining a high Coulombic efficiency of 99.74%. This study provides a practical approach for inhibiting dendrite growth and side reactions by harnessing carbonyl chemistry.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202305683</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Acetylacetone ; Carbonyls ; Electrolytes ; Functional groups ; Materials science ; Metal surfaces ; Molecular structure ; Rechargeable batteries ; Solvation</subject><ispartof>Advanced functional materials, 2023-11, Vol.33 (46)</ispartof><rights>2023 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c267t-6233953bdb4aa313824d2539ee54803d06e841aeedbc4fb8e0fdd540c7f7eb943</citedby><cites>FETCH-LOGICAL-c267t-6233953bdb4aa313824d2539ee54803d06e841aeedbc4fb8e0fdd540c7f7eb943</cites><orcidid>0000-0001-8983-2097</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Cao, Heng</creatorcontrib><creatorcontrib>Zhang, Xiaoqin</creatorcontrib><creatorcontrib>Xie, Bin</creatorcontrib><creatorcontrib>Huang, Xiaomin</creatorcontrib><creatorcontrib>Xie, Fengyu</creatorcontrib><creatorcontrib>Huo, Yu</creatorcontrib><creatorcontrib>Zheng, Qiaoji</creatorcontrib><creatorcontrib>Zhao, Ruyi</creatorcontrib><creatorcontrib>Hu, Qiang</creatorcontrib><creatorcontrib>Kang, Ling</creatorcontrib><creatorcontrib>Liu, Shude</creatorcontrib><creatorcontrib>Lin, Dunmin</creatorcontrib><title>Unraveling the Solvation Structure and Electrolyte Interface through Carbonyl Chemistry for Durable and Dendrite‐Free Zn Anode</title><title>Advanced functional materials</title><description>Aqueous Zn ion batteries are appealing systems owing to their safety, low cost, and environmental friendliness; however, their practical applicability is impeded by the growth of Zn dendrites and side reactions. Herein, a dual‐functional electrolyte additive, namely acetylacetone (AT) is utilized for the simultaneous regulation of the solventized structure and anode–electrolyte interface (AEI) to achieve a durable, dendrite‐free Zn anode. Theoretical calculations and experimental characterizations reveal that the AT molecule can be adsorbed onto Zn metal surface to reconstruct the AEI and allow for the primordial desolvation of [Zn(H 2 O) 6 ] 2+ at locations away from the surface of the Zn anode during deposition, which is attributed to the strong polarity of the carbonyl functional group. In addition, the two carbonyls of AT can replace two H 2 O molecules in the primary solventized structure of Zn 2+ to reduce the number of active H 2 O molecules, efficiently suppressing Zn dendrite growth and detrimental reactions. As a proof of concept, a Zn//Cu cell is constructed in ZnSO 4 containing 3 vol.% AT electrolyte, delivering stable cycling over 1800 cycles while maintaining a high Coulombic efficiency of 99.74%. This study provides a practical approach for inhibiting dendrite growth and side reactions by harnessing carbonyl chemistry.</description><subject>Acetylacetone</subject><subject>Carbonyls</subject><subject>Electrolytes</subject><subject>Functional groups</subject><subject>Materials science</subject><subject>Metal surfaces</subject><subject>Molecular structure</subject><subject>Rechargeable batteries</subject><subject>Solvation</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNo9kMtKw0AYhQdRsFa3rgdct84ll8mypK0WCi5qQdyESeZPm5LO1D-TQnZ9BJ_RJzGl4uqcxbnAR8gjZ2POmHjWptyPBROShZGSV2TAIx6NJBPq-t_zj1ty1zQ7xngcy2BATmuL-gh1ZTfUb4GuXH3UvnKWrjy2hW8RqLaGzmooPLq680AX1gOWuoC-ga7dbGmqMXe2q2m6hX3VeOxo6ZBOW9R5fRmYgjVYefg5fc8RgH5aOrHOwD25KXXdwMOfDsl6PntPX0fLt5dFOlmOChHFfhQJKZNQ5iYPtJZcKhEYEcoEIAwUk4ZFoAKuAUxeBGWugJXGhAEr4jKGPAnkkDxddg_ovlpofLZzLdr-MhNKxaInyJI-Nb6kCnRNg1BmB6z2GruMs-xMOTtTzv4py18PSHNs</recordid><startdate>20231101</startdate><enddate>20231101</enddate><creator>Cao, Heng</creator><creator>Zhang, Xiaoqin</creator><creator>Xie, Bin</creator><creator>Huang, Xiaomin</creator><creator>Xie, Fengyu</creator><creator>Huo, Yu</creator><creator>Zheng, Qiaoji</creator><creator>Zhao, Ruyi</creator><creator>Hu, Qiang</creator><creator>Kang, Ling</creator><creator>Liu, Shude</creator><creator>Lin, Dunmin</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-8983-2097</orcidid></search><sort><creationdate>20231101</creationdate><title>Unraveling the Solvation Structure and Electrolyte Interface through Carbonyl Chemistry for Durable and Dendrite‐Free Zn Anode</title><author>Cao, Heng ; Zhang, Xiaoqin ; Xie, Bin ; Huang, Xiaomin ; Xie, Fengyu ; Huo, Yu ; Zheng, Qiaoji ; Zhao, Ruyi ; Hu, Qiang ; Kang, Ling ; Liu, Shude ; Lin, Dunmin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c267t-6233953bdb4aa313824d2539ee54803d06e841aeedbc4fb8e0fdd540c7f7eb943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Acetylacetone</topic><topic>Carbonyls</topic><topic>Electrolytes</topic><topic>Functional groups</topic><topic>Materials science</topic><topic>Metal surfaces</topic><topic>Molecular structure</topic><topic>Rechargeable batteries</topic><topic>Solvation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cao, Heng</creatorcontrib><creatorcontrib>Zhang, Xiaoqin</creatorcontrib><creatorcontrib>Xie, Bin</creatorcontrib><creatorcontrib>Huang, Xiaomin</creatorcontrib><creatorcontrib>Xie, Fengyu</creatorcontrib><creatorcontrib>Huo, Yu</creatorcontrib><creatorcontrib>Zheng, Qiaoji</creatorcontrib><creatorcontrib>Zhao, Ruyi</creatorcontrib><creatorcontrib>Hu, Qiang</creatorcontrib><creatorcontrib>Kang, Ling</creatorcontrib><creatorcontrib>Liu, Shude</creatorcontrib><creatorcontrib>Lin, Dunmin</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cao, Heng</au><au>Zhang, Xiaoqin</au><au>Xie, Bin</au><au>Huang, Xiaomin</au><au>Xie, Fengyu</au><au>Huo, Yu</au><au>Zheng, Qiaoji</au><au>Zhao, Ruyi</au><au>Hu, Qiang</au><au>Kang, Ling</au><au>Liu, Shude</au><au>Lin, Dunmin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Unraveling the Solvation Structure and Electrolyte Interface through Carbonyl Chemistry for Durable and Dendrite‐Free Zn Anode</atitle><jtitle>Advanced functional materials</jtitle><date>2023-11-01</date><risdate>2023</risdate><volume>33</volume><issue>46</issue><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Aqueous Zn ion batteries are appealing systems owing to their safety, low cost, and environmental friendliness; however, their practical applicability is impeded by the growth of Zn dendrites and side reactions. Herein, a dual‐functional electrolyte additive, namely acetylacetone (AT) is utilized for the simultaneous regulation of the solventized structure and anode–electrolyte interface (AEI) to achieve a durable, dendrite‐free Zn anode. Theoretical calculations and experimental characterizations reveal that the AT molecule can be adsorbed onto Zn metal surface to reconstruct the AEI and allow for the primordial desolvation of [Zn(H 2 O) 6 ] 2+ at locations away from the surface of the Zn anode during deposition, which is attributed to the strong polarity of the carbonyl functional group. In addition, the two carbonyls of AT can replace two H 2 O molecules in the primary solventized structure of Zn 2+ to reduce the number of active H 2 O molecules, efficiently suppressing Zn dendrite growth and detrimental reactions. As a proof of concept, a Zn//Cu cell is constructed in ZnSO 4 containing 3 vol.% AT electrolyte, delivering stable cycling over 1800 cycles while maintaining a high Coulombic efficiency of 99.74%. This study provides a practical approach for inhibiting dendrite growth and side reactions by harnessing carbonyl chemistry.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.202305683</doi><orcidid>https://orcid.org/0000-0001-8983-2097</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1616-301X
ispartof Advanced functional materials, 2023-11, Vol.33 (46)
issn 1616-301X
1616-3028
language eng
recordid cdi_proquest_journals_2887200209
source Wiley-Blackwell Read & Publish Collection
subjects Acetylacetone
Carbonyls
Electrolytes
Functional groups
Materials science
Metal surfaces
Molecular structure
Rechargeable batteries
Solvation
title Unraveling the Solvation Structure and Electrolyte Interface through Carbonyl Chemistry for Durable and Dendrite‐Free Zn Anode
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T21%3A22%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Unraveling%20the%20Solvation%20Structure%20and%20Electrolyte%20Interface%20through%20Carbonyl%20Chemistry%20for%20Durable%20and%20Dendrite%E2%80%90Free%20Zn%20Anode&rft.jtitle=Advanced%20functional%20materials&rft.au=Cao,%20Heng&rft.date=2023-11-01&rft.volume=33&rft.issue=46&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202305683&rft_dat=%3Cproquest_cross%3E2887200209%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c267t-6233953bdb4aa313824d2539ee54803d06e841aeedbc4fb8e0fdd540c7f7eb943%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2887200209&rft_id=info:pmid/&rfr_iscdi=true