Loading…

Modifying Electronic Structure of Cation‐Exchanged Bimetallic Sulfide/Metal Oxide Heterostructure through In Situ Inclusion of Silver (Ag) Nanoparticles for Extrinsic Pseudocapacitor

The inferior electrical conductivity of conventional electrodes and their slow charge transport impose limitations on the electrochemical performance of supercapacitors (SCs) using those electrodes, necessitating strategies to overcome the limitations. An in situ Ag ion‐incorporated cation‐exchanged...

Full description

Saved in:
Bibliographic Details
Published in:Advanced functional materials 2023-11, Vol.33 (46)
Main Authors: Patil, Amar. M., Moon, Sunil, Jadhav, Arti A., Hong, Jongwoo, Kang, Keonwook, Jun, Seong Chan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c267t-251b0128e0282e4bfdde2ec80f978cf8ff475f5d50f127a3f25eab3fb97ff9643
cites cdi_FETCH-LOGICAL-c267t-251b0128e0282e4bfdde2ec80f978cf8ff475f5d50f127a3f25eab3fb97ff9643
container_end_page
container_issue 46
container_start_page
container_title Advanced functional materials
container_volume 33
creator Patil, Amar. M.
Moon, Sunil
Jadhav, Arti A.
Hong, Jongwoo
Kang, Keonwook
Jun, Seong Chan
description The inferior electrical conductivity of conventional electrodes and their slow charge transport impose limitations on the electrochemical performance of supercapacitors (SCs) using those electrodes, necessitating strategies to overcome the limitations. An in situ Ag ion‐incorporated cation‐exchanged bimetallic sulfide/metal oxide heterostructure (Ag‐Co 9‐x Fe x S 8 @α‐Fe x O y ) is synthesized using a two‐step hydrothermal method. The coordination bond formation and Ag nanoparticle (NP) incorporation improve the electrical conductivity and adhesion of the heterostructure and reduce its interface resistance and volume expansion throughout the charge/discharge cycles. Density functional theory investigations indicate that the remarkable interlayer and interparticle conductivities of the heterostructure resulting from Ag doping have changed its electronic states, leading to an enhanced electrical conductivity. The optimized electrode has an excellent specific capacity (213.6 mA h g −1 at 1 A g −1 ) and can maintain 93.2% capacity retention with excellent Coulombic efficiency over 20 000 charge/discharge cycles. A flexible solid‐state extrinsic pseudocapacitor (EPSC) is fabricated using Ag‐Co 9‐x Fe x S 8 @α‐Fe x O y and Ti 3 C 2 T X electrodes. The EPSC has specific and volumetric capacitances of 259 F g −1 and 2.7 F cm −3 at 0.7 A g −1 , respectively, an energy density of 80.9 Wh kg −1 at 525 W kg −1 , and a capacity retention of 92.8% over 5000 charge/discharge cycles.
doi_str_mv 10.1002/adfm.202305264
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2887200397</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2887200397</sourcerecordid><originalsourceid>FETCH-LOGICAL-c267t-251b0128e0282e4bfdde2ec80f978cf8ff475f5d50f127a3f25eab3fb97ff9643</originalsourceid><addsrcrecordid>eNo9kU1KA0EQhQdRMEa3rhvc6CJJd89PT5YaogkYFaLgbuj0VCUtk-nYP5LsPILH8TyexBmUrOpRPL5H1Yuic0b7jFI-kCWu-5zymKY8Sw6iDstY1ospzw_3mr0eRyfOvVHKhIiTTvQ9M6XGna6XZFyB8tbUWpG5t0H5YIEYJCPptal_Pr_GW7WS9RJKcqPX4GVVtdZQoS5hMGsX5HHbaDIBD9a4PcSvrAnLFZnWZK59aKaqgmugLX6uqw-w5PJ6eUUeZG020nqtKnAEjSXjrbe6dk3Qk4NQGiU3Umlv7Gl0hLJycPY_u9HL7fh5NOndP95NR9f3PcUz4Xs8ZQvKeA7NGzgkCyxL4KByikORK8wRE5FiWqYUGRcyRp6CXMS4GArEYZbE3ejij7ux5j2A88WbCbZuIgue54JTGg9F4-r_uVRzt7OAxcbqtbS7gtGibado2yn27cS_6HyI2w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2887200397</pqid></control><display><type>article</type><title>Modifying Electronic Structure of Cation‐Exchanged Bimetallic Sulfide/Metal Oxide Heterostructure through In Situ Inclusion of Silver (Ag) Nanoparticles for Extrinsic Pseudocapacitor</title><source>Wiley</source><creator>Patil, Amar. M. ; Moon, Sunil ; Jadhav, Arti A. ; Hong, Jongwoo ; Kang, Keonwook ; Jun, Seong Chan</creator><creatorcontrib>Patil, Amar. M. ; Moon, Sunil ; Jadhav, Arti A. ; Hong, Jongwoo ; Kang, Keonwook ; Jun, Seong Chan</creatorcontrib><description>The inferior electrical conductivity of conventional electrodes and their slow charge transport impose limitations on the electrochemical performance of supercapacitors (SCs) using those electrodes, necessitating strategies to overcome the limitations. An in situ Ag ion‐incorporated cation‐exchanged bimetallic sulfide/metal oxide heterostructure (Ag‐Co 9‐x Fe x S 8 @α‐Fe x O y ) is synthesized using a two‐step hydrothermal method. The coordination bond formation and Ag nanoparticle (NP) incorporation improve the electrical conductivity and adhesion of the heterostructure and reduce its interface resistance and volume expansion throughout the charge/discharge cycles. Density functional theory investigations indicate that the remarkable interlayer and interparticle conductivities of the heterostructure resulting from Ag doping have changed its electronic states, leading to an enhanced electrical conductivity. The optimized electrode has an excellent specific capacity (213.6 mA h g −1 at 1 A g −1 ) and can maintain 93.2% capacity retention with excellent Coulombic efficiency over 20 000 charge/discharge cycles. A flexible solid‐state extrinsic pseudocapacitor (EPSC) is fabricated using Ag‐Co 9‐x Fe x S 8 @α‐Fe x O y and Ti 3 C 2 T X electrodes. The EPSC has specific and volumetric capacitances of 259 F g −1 and 2.7 F cm −3 at 0.7 A g −1 , respectively, an energy density of 80.9 Wh kg −1 at 525 W kg −1 , and a capacity retention of 92.8% over 5000 charge/discharge cycles.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202305264</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Bimetals ; Charge transport ; Conductivity ; Density functional theory ; Discharge ; Electrical resistivity ; Electrochemical analysis ; Electrodes ; Electron states ; Electronic structure ; Heterostructures ; Interlayers ; Materials science ; Metal oxides ; Nanoparticles ; Silver ; Supercapacitors</subject><ispartof>Advanced functional materials, 2023-11, Vol.33 (46)</ispartof><rights>2023 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c267t-251b0128e0282e4bfdde2ec80f978cf8ff475f5d50f127a3f25eab3fb97ff9643</citedby><cites>FETCH-LOGICAL-c267t-251b0128e0282e4bfdde2ec80f978cf8ff475f5d50f127a3f25eab3fb97ff9643</cites><orcidid>0000-0001-6986-8308</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Patil, Amar. M.</creatorcontrib><creatorcontrib>Moon, Sunil</creatorcontrib><creatorcontrib>Jadhav, Arti A.</creatorcontrib><creatorcontrib>Hong, Jongwoo</creatorcontrib><creatorcontrib>Kang, Keonwook</creatorcontrib><creatorcontrib>Jun, Seong Chan</creatorcontrib><title>Modifying Electronic Structure of Cation‐Exchanged Bimetallic Sulfide/Metal Oxide Heterostructure through In Situ Inclusion of Silver (Ag) Nanoparticles for Extrinsic Pseudocapacitor</title><title>Advanced functional materials</title><description>The inferior electrical conductivity of conventional electrodes and their slow charge transport impose limitations on the electrochemical performance of supercapacitors (SCs) using those electrodes, necessitating strategies to overcome the limitations. An in situ Ag ion‐incorporated cation‐exchanged bimetallic sulfide/metal oxide heterostructure (Ag‐Co 9‐x Fe x S 8 @α‐Fe x O y ) is synthesized using a two‐step hydrothermal method. The coordination bond formation and Ag nanoparticle (NP) incorporation improve the electrical conductivity and adhesion of the heterostructure and reduce its interface resistance and volume expansion throughout the charge/discharge cycles. Density functional theory investigations indicate that the remarkable interlayer and interparticle conductivities of the heterostructure resulting from Ag doping have changed its electronic states, leading to an enhanced electrical conductivity. The optimized electrode has an excellent specific capacity (213.6 mA h g −1 at 1 A g −1 ) and can maintain 93.2% capacity retention with excellent Coulombic efficiency over 20 000 charge/discharge cycles. A flexible solid‐state extrinsic pseudocapacitor (EPSC) is fabricated using Ag‐Co 9‐x Fe x S 8 @α‐Fe x O y and Ti 3 C 2 T X electrodes. The EPSC has specific and volumetric capacitances of 259 F g −1 and 2.7 F cm −3 at 0.7 A g −1 , respectively, an energy density of 80.9 Wh kg −1 at 525 W kg −1 , and a capacity retention of 92.8% over 5000 charge/discharge cycles.</description><subject>Bimetals</subject><subject>Charge transport</subject><subject>Conductivity</subject><subject>Density functional theory</subject><subject>Discharge</subject><subject>Electrical resistivity</subject><subject>Electrochemical analysis</subject><subject>Electrodes</subject><subject>Electron states</subject><subject>Electronic structure</subject><subject>Heterostructures</subject><subject>Interlayers</subject><subject>Materials science</subject><subject>Metal oxides</subject><subject>Nanoparticles</subject><subject>Silver</subject><subject>Supercapacitors</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNo9kU1KA0EQhQdRMEa3rhvc6CJJd89PT5YaogkYFaLgbuj0VCUtk-nYP5LsPILH8TyexBmUrOpRPL5H1Yuic0b7jFI-kCWu-5zymKY8Sw6iDstY1ospzw_3mr0eRyfOvVHKhIiTTvQ9M6XGna6XZFyB8tbUWpG5t0H5YIEYJCPptal_Pr_GW7WS9RJKcqPX4GVVtdZQoS5hMGsX5HHbaDIBD9a4PcSvrAnLFZnWZK59aKaqgmugLX6uqw-w5PJ6eUUeZG020nqtKnAEjSXjrbe6dk3Qk4NQGiU3Umlv7Gl0hLJycPY_u9HL7fh5NOndP95NR9f3PcUz4Xs8ZQvKeA7NGzgkCyxL4KByikORK8wRE5FiWqYUGRcyRp6CXMS4GArEYZbE3ejij7ux5j2A88WbCbZuIgue54JTGg9F4-r_uVRzt7OAxcbqtbS7gtGibado2yn27cS_6HyI2w</recordid><startdate>20231101</startdate><enddate>20231101</enddate><creator>Patil, Amar. M.</creator><creator>Moon, Sunil</creator><creator>Jadhav, Arti A.</creator><creator>Hong, Jongwoo</creator><creator>Kang, Keonwook</creator><creator>Jun, Seong Chan</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-6986-8308</orcidid></search><sort><creationdate>20231101</creationdate><title>Modifying Electronic Structure of Cation‐Exchanged Bimetallic Sulfide/Metal Oxide Heterostructure through In Situ Inclusion of Silver (Ag) Nanoparticles for Extrinsic Pseudocapacitor</title><author>Patil, Amar. M. ; Moon, Sunil ; Jadhav, Arti A. ; Hong, Jongwoo ; Kang, Keonwook ; Jun, Seong Chan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c267t-251b0128e0282e4bfdde2ec80f978cf8ff475f5d50f127a3f25eab3fb97ff9643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Bimetals</topic><topic>Charge transport</topic><topic>Conductivity</topic><topic>Density functional theory</topic><topic>Discharge</topic><topic>Electrical resistivity</topic><topic>Electrochemical analysis</topic><topic>Electrodes</topic><topic>Electron states</topic><topic>Electronic structure</topic><topic>Heterostructures</topic><topic>Interlayers</topic><topic>Materials science</topic><topic>Metal oxides</topic><topic>Nanoparticles</topic><topic>Silver</topic><topic>Supercapacitors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Patil, Amar. M.</creatorcontrib><creatorcontrib>Moon, Sunil</creatorcontrib><creatorcontrib>Jadhav, Arti A.</creatorcontrib><creatorcontrib>Hong, Jongwoo</creatorcontrib><creatorcontrib>Kang, Keonwook</creatorcontrib><creatorcontrib>Jun, Seong Chan</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Patil, Amar. M.</au><au>Moon, Sunil</au><au>Jadhav, Arti A.</au><au>Hong, Jongwoo</au><au>Kang, Keonwook</au><au>Jun, Seong Chan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modifying Electronic Structure of Cation‐Exchanged Bimetallic Sulfide/Metal Oxide Heterostructure through In Situ Inclusion of Silver (Ag) Nanoparticles for Extrinsic Pseudocapacitor</atitle><jtitle>Advanced functional materials</jtitle><date>2023-11-01</date><risdate>2023</risdate><volume>33</volume><issue>46</issue><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>The inferior electrical conductivity of conventional electrodes and their slow charge transport impose limitations on the electrochemical performance of supercapacitors (SCs) using those electrodes, necessitating strategies to overcome the limitations. An in situ Ag ion‐incorporated cation‐exchanged bimetallic sulfide/metal oxide heterostructure (Ag‐Co 9‐x Fe x S 8 @α‐Fe x O y ) is synthesized using a two‐step hydrothermal method. The coordination bond formation and Ag nanoparticle (NP) incorporation improve the electrical conductivity and adhesion of the heterostructure and reduce its interface resistance and volume expansion throughout the charge/discharge cycles. Density functional theory investigations indicate that the remarkable interlayer and interparticle conductivities of the heterostructure resulting from Ag doping have changed its electronic states, leading to an enhanced electrical conductivity. The optimized electrode has an excellent specific capacity (213.6 mA h g −1 at 1 A g −1 ) and can maintain 93.2% capacity retention with excellent Coulombic efficiency over 20 000 charge/discharge cycles. A flexible solid‐state extrinsic pseudocapacitor (EPSC) is fabricated using Ag‐Co 9‐x Fe x S 8 @α‐Fe x O y and Ti 3 C 2 T X electrodes. The EPSC has specific and volumetric capacitances of 259 F g −1 and 2.7 F cm −3 at 0.7 A g −1 , respectively, an energy density of 80.9 Wh kg −1 at 525 W kg −1 , and a capacity retention of 92.8% over 5000 charge/discharge cycles.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.202305264</doi><orcidid>https://orcid.org/0000-0001-6986-8308</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1616-301X
ispartof Advanced functional materials, 2023-11, Vol.33 (46)
issn 1616-301X
1616-3028
language eng
recordid cdi_proquest_journals_2887200397
source Wiley
subjects Bimetals
Charge transport
Conductivity
Density functional theory
Discharge
Electrical resistivity
Electrochemical analysis
Electrodes
Electron states
Electronic structure
Heterostructures
Interlayers
Materials science
Metal oxides
Nanoparticles
Silver
Supercapacitors
title Modifying Electronic Structure of Cation‐Exchanged Bimetallic Sulfide/Metal Oxide Heterostructure through In Situ Inclusion of Silver (Ag) Nanoparticles for Extrinsic Pseudocapacitor
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T17%3A50%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modifying%20Electronic%20Structure%20of%20Cation%E2%80%90Exchanged%20Bimetallic%20Sulfide/Metal%20Oxide%20Heterostructure%20through%20In%20Situ%20Inclusion%20of%20Silver%20(Ag)%20Nanoparticles%20for%20Extrinsic%20Pseudocapacitor&rft.jtitle=Advanced%20functional%20materials&rft.au=Patil,%20Amar.%20M.&rft.date=2023-11-01&rft.volume=33&rft.issue=46&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202305264&rft_dat=%3Cproquest_cross%3E2887200397%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c267t-251b0128e0282e4bfdde2ec80f978cf8ff475f5d50f127a3f25eab3fb97ff9643%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2887200397&rft_id=info:pmid/&rfr_iscdi=true