Loading…
Research on normal ice adhesion strength in icing wind tunnel
Aircraft icing seriously jeopardizes flight safety. The design of aircraft anti-icing/de-icing systems requires a thorough understanding of the adhesion between the ice and the substrate. In this research, an experimental device that can be housed within a wing is designed and constructed. Simulatio...
Saved in:
Published in: | Proceedings of the Institution of Mechanical Engineers. Part G, Journal of aerospace engineering Journal of aerospace engineering, 2023-11, Vol.237 (14), p.3272-3284 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Aircraft icing seriously jeopardizes flight safety. The design of aircraft anti-icing/de-icing systems requires a thorough understanding of the adhesion between the ice and the substrate. In this research, an experimental device that can be housed within a wing is designed and constructed. Simulation analysis of the interfacial stresses is performed, which reveals that increasing the load and the interface size led to a deterioration in the uniformity of stresses at the interface. In addition, the ice layer does not undergo cohesive damage during the tests. The normal ice adhesion strength is evaluated in an icing wind tunnel using the methodology outlined in this paper. Glaze ice exhibits an increase in normal adhesion strength at lower temperatures, whereas the trend is reversed for rime ice. The minimum adhesion strength occurs near the medium volume diameter (MVD) of 30 µm. Furthermore, the normal strength is significantly enhanced by increase in wind speed and surface roughness, as well as by surface painting. The adhesion strength of aluminum substrates to ice is greater compared to titanium and stainless steel. Compared to shear adhesion strength, normal adhesion strength is less sensitive to various influencing factors. The proposed experimental framework provides precise measurement of normal adhesion strength of impact ice in the icing wind tunnel. |
---|---|
ISSN: | 0954-4100 2041-3025 |
DOI: | 10.1177/09544100231189803 |