Loading…
Transport properties and microstructural evolution of Bi–Cu–Te ternary alloys
This study delves into the profound influence of defects and their evolution within the microstructure on the thermoelectric transport properties, with a primary focus on the Bi–Cu–Te ternary system. By systematically investigating the intricate relationships between composition, microstructure, and...
Saved in:
Published in: | Journal of materials science 2023-11, Vol.58 (42), p.16462-16473 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c343t-f6b245115b788e71ef005afd0f0bb815040caa150f70824dfd8468baefd45e8a3 |
container_end_page | 16473 |
container_issue | 42 |
container_start_page | 16462 |
container_title | Journal of materials science |
container_volume | 58 |
creator | Serbesa, Ayansa Tolesa Pal, Varinder Sreeram, P. R. Legese, Surafel Shiferaw Kumar, Bhupendra Adamo, Chalchisa Getachew Mukherjee, Shriparna Paliwal, Manas Olu, Femi Emmanuel Tiwary, Chandra Sekhar Chattopadhyay, Kamanio |
description | This study delves into the profound influence of defects and their evolution within the microstructure on the thermoelectric transport properties, with a primary focus on the Bi–Cu–Te ternary system. By systematically investigating the intricate relationships between composition, microstructure, and thermoelectric properties, this research offers a comprehensive framework for optimizing these alloys in potential thermoelectric applications. The candidate alloy compositions were selected using a self-consistent thermodynamically optimized database of Bi–Cu–Te and synthesized using flame melting. The microstructure evolution was characterized using X-ray diffraction, scanning electron microscope, and electron probe microanalyzer. The presence of γCu
3
Te
2
intermetallic significantly enhanced hardness, with optimized compositions showing a doubling of hardness compared to conventional BiSbTe alloys. The observed morphologies of each alloy and their thermoelectric properties correlate with the Cu concentration variations. An optimized composition exhibited excellent electrical conductivity of 100 kS/m, Seebeck coefficient of − 145 μV/K, and power factor of 1.85 mW/mK
2
. These results provide insights into tailoring the composition and microstructure of Bi–Cu–Te alloys to improve their efficiency for thermoelectric waste heat recovery. |
doi_str_mv | 10.1007/s10853-023-09004-2 |
format | article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2888485874</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A772377969</galeid><sourcerecordid>A772377969</sourcerecordid><originalsourceid>FETCH-LOGICAL-c343t-f6b245115b788e71ef005afd0f0bb815040caa150f70824dfd8468baefd45e8a3</originalsourceid><addsrcrecordid>eNp9kc1KxDAUhYMoOP68gKuCKxfVmzSdZJbj4M-AIOq4Dml7M3ToNDVJxdn5Dr6hT2K0gsxGws2Fy3fCyT2EnFA4pwDiwlOQeZYCizUB4CnbISOaiyzlErJdMgJgLGV8TPfJgfcrAMgFoyPysHC69Z11Iemc7dCFGn2i2ypZ16WzPri-DL3TTYKvtulDbdvEmuSy_nz_mPXxWmAS0LXabRLdNHbjj8ie0Y3H499-SJ6vrxaz2_Tu_mY-m96lZcazkJpxwXhOaV4IKVFQNNGSNhUYKApJc-BQah27ESAZr0wl-VgWGk3Fc5Q6OySnw7vR90uPPqiV7aORxismpeQyl4JH6nyglrpBVbfGBqfLeCqMH7QtmjrOp0KwTIjJeBIFZ1uCyAR8C0vde6_mT4_bLBvY7015h0Z1rl7HVSgK6jsXNeSiYi7qJxfFoigbRD7C7RLdn-9_VF91hJHs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2888485874</pqid></control><display><type>article</type><title>Transport properties and microstructural evolution of Bi–Cu–Te ternary alloys</title><source>Springer Nature</source><creator>Serbesa, Ayansa Tolesa ; Pal, Varinder ; Sreeram, P. R. ; Legese, Surafel Shiferaw ; Kumar, Bhupendra ; Adamo, Chalchisa Getachew ; Mukherjee, Shriparna ; Paliwal, Manas ; Olu, Femi Emmanuel ; Tiwary, Chandra Sekhar ; Chattopadhyay, Kamanio</creator><creatorcontrib>Serbesa, Ayansa Tolesa ; Pal, Varinder ; Sreeram, P. R. ; Legese, Surafel Shiferaw ; Kumar, Bhupendra ; Adamo, Chalchisa Getachew ; Mukherjee, Shriparna ; Paliwal, Manas ; Olu, Femi Emmanuel ; Tiwary, Chandra Sekhar ; Chattopadhyay, Kamanio</creatorcontrib><description>This study delves into the profound influence of defects and their evolution within the microstructure on the thermoelectric transport properties, with a primary focus on the Bi–Cu–Te ternary system. By systematically investigating the intricate relationships between composition, microstructure, and thermoelectric properties, this research offers a comprehensive framework for optimizing these alloys in potential thermoelectric applications. The candidate alloy compositions were selected using a self-consistent thermodynamically optimized database of Bi–Cu–Te and synthesized using flame melting. The microstructure evolution was characterized using X-ray diffraction, scanning electron microscope, and electron probe microanalyzer. The presence of γCu
3
Te
2
intermetallic significantly enhanced hardness, with optimized compositions showing a doubling of hardness compared to conventional BiSbTe alloys. The observed morphologies of each alloy and their thermoelectric properties correlate with the Cu concentration variations. An optimized composition exhibited excellent electrical conductivity of 100 kS/m, Seebeck coefficient of − 145 μV/K, and power factor of 1.85 mW/mK
2
. These results provide insights into tailoring the composition and microstructure of Bi–Cu–Te alloys to improve their efficiency for thermoelectric waste heat recovery.</description><identifier>ISSN: 0022-2461</identifier><identifier>EISSN: 1573-4803</identifier><identifier>DOI: 10.1007/s10853-023-09004-2</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Alloys ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Classical Mechanics ; Crystallography and Scattering Methods ; Diffraction ; Electric properties ; Electrical conductivity ; Electrical resistivity ; Electron probes ; Evolution ; Hardness ; Intermetallic compounds ; Materials Science ; Mechanical properties ; Metals & Corrosion ; Microstructure ; Polymer Sciences ; Power factor ; Seebeck effect ; Solid Mechanics ; Specialty metals industry ; Tellurium ; Ternary alloys ; Ternary systems ; Thermoelectricity ; Transport properties ; Waste heat recovery ; X-rays</subject><ispartof>Journal of materials science, 2023-11, Vol.58 (42), p.16462-16473</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>COPYRIGHT 2023 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c343t-f6b245115b788e71ef005afd0f0bb815040caa150f70824dfd8468baefd45e8a3</cites><orcidid>0000-0001-9760-9768</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Serbesa, Ayansa Tolesa</creatorcontrib><creatorcontrib>Pal, Varinder</creatorcontrib><creatorcontrib>Sreeram, P. R.</creatorcontrib><creatorcontrib>Legese, Surafel Shiferaw</creatorcontrib><creatorcontrib>Kumar, Bhupendra</creatorcontrib><creatorcontrib>Adamo, Chalchisa Getachew</creatorcontrib><creatorcontrib>Mukherjee, Shriparna</creatorcontrib><creatorcontrib>Paliwal, Manas</creatorcontrib><creatorcontrib>Olu, Femi Emmanuel</creatorcontrib><creatorcontrib>Tiwary, Chandra Sekhar</creatorcontrib><creatorcontrib>Chattopadhyay, Kamanio</creatorcontrib><title>Transport properties and microstructural evolution of Bi–Cu–Te ternary alloys</title><title>Journal of materials science</title><addtitle>J Mater Sci</addtitle><description>This study delves into the profound influence of defects and their evolution within the microstructure on the thermoelectric transport properties, with a primary focus on the Bi–Cu–Te ternary system. By systematically investigating the intricate relationships between composition, microstructure, and thermoelectric properties, this research offers a comprehensive framework for optimizing these alloys in potential thermoelectric applications. The candidate alloy compositions were selected using a self-consistent thermodynamically optimized database of Bi–Cu–Te and synthesized using flame melting. The microstructure evolution was characterized using X-ray diffraction, scanning electron microscope, and electron probe microanalyzer. The presence of γCu
3
Te
2
intermetallic significantly enhanced hardness, with optimized compositions showing a doubling of hardness compared to conventional BiSbTe alloys. The observed morphologies of each alloy and their thermoelectric properties correlate with the Cu concentration variations. An optimized composition exhibited excellent electrical conductivity of 100 kS/m, Seebeck coefficient of − 145 μV/K, and power factor of 1.85 mW/mK
2
. These results provide insights into tailoring the composition and microstructure of Bi–Cu–Te alloys to improve their efficiency for thermoelectric waste heat recovery.</description><subject>Alloys</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Classical Mechanics</subject><subject>Crystallography and Scattering Methods</subject><subject>Diffraction</subject><subject>Electric properties</subject><subject>Electrical conductivity</subject><subject>Electrical resistivity</subject><subject>Electron probes</subject><subject>Evolution</subject><subject>Hardness</subject><subject>Intermetallic compounds</subject><subject>Materials Science</subject><subject>Mechanical properties</subject><subject>Metals & Corrosion</subject><subject>Microstructure</subject><subject>Polymer Sciences</subject><subject>Power factor</subject><subject>Seebeck effect</subject><subject>Solid Mechanics</subject><subject>Specialty metals industry</subject><subject>Tellurium</subject><subject>Ternary alloys</subject><subject>Ternary systems</subject><subject>Thermoelectricity</subject><subject>Transport properties</subject><subject>Waste heat recovery</subject><subject>X-rays</subject><issn>0022-2461</issn><issn>1573-4803</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kc1KxDAUhYMoOP68gKuCKxfVmzSdZJbj4M-AIOq4Dml7M3ToNDVJxdn5Dr6hT2K0gsxGws2Fy3fCyT2EnFA4pwDiwlOQeZYCizUB4CnbISOaiyzlErJdMgJgLGV8TPfJgfcrAMgFoyPysHC69Z11Iemc7dCFGn2i2ypZ16WzPri-DL3TTYKvtulDbdvEmuSy_nz_mPXxWmAS0LXabRLdNHbjj8ie0Y3H499-SJ6vrxaz2_Tu_mY-m96lZcazkJpxwXhOaV4IKVFQNNGSNhUYKApJc-BQah27ESAZr0wl-VgWGk3Fc5Q6OySnw7vR90uPPqiV7aORxismpeQyl4JH6nyglrpBVbfGBqfLeCqMH7QtmjrOp0KwTIjJeBIFZ1uCyAR8C0vde6_mT4_bLBvY7015h0Z1rl7HVSgK6jsXNeSiYi7qJxfFoigbRD7C7RLdn-9_VF91hJHs</recordid><startdate>20231101</startdate><enddate>20231101</enddate><creator>Serbesa, Ayansa Tolesa</creator><creator>Pal, Varinder</creator><creator>Sreeram, P. R.</creator><creator>Legese, Surafel Shiferaw</creator><creator>Kumar, Bhupendra</creator><creator>Adamo, Chalchisa Getachew</creator><creator>Mukherjee, Shriparna</creator><creator>Paliwal, Manas</creator><creator>Olu, Femi Emmanuel</creator><creator>Tiwary, Chandra Sekhar</creator><creator>Chattopadhyay, Kamanio</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0001-9760-9768</orcidid></search><sort><creationdate>20231101</creationdate><title>Transport properties and microstructural evolution of Bi–Cu–Te ternary alloys</title><author>Serbesa, Ayansa Tolesa ; Pal, Varinder ; Sreeram, P. R. ; Legese, Surafel Shiferaw ; Kumar, Bhupendra ; Adamo, Chalchisa Getachew ; Mukherjee, Shriparna ; Paliwal, Manas ; Olu, Femi Emmanuel ; Tiwary, Chandra Sekhar ; Chattopadhyay, Kamanio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c343t-f6b245115b788e71ef005afd0f0bb815040caa150f70824dfd8468baefd45e8a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Alloys</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Classical Mechanics</topic><topic>Crystallography and Scattering Methods</topic><topic>Diffraction</topic><topic>Electric properties</topic><topic>Electrical conductivity</topic><topic>Electrical resistivity</topic><topic>Electron probes</topic><topic>Evolution</topic><topic>Hardness</topic><topic>Intermetallic compounds</topic><topic>Materials Science</topic><topic>Mechanical properties</topic><topic>Metals & Corrosion</topic><topic>Microstructure</topic><topic>Polymer Sciences</topic><topic>Power factor</topic><topic>Seebeck effect</topic><topic>Solid Mechanics</topic><topic>Specialty metals industry</topic><topic>Tellurium</topic><topic>Ternary alloys</topic><topic>Ternary systems</topic><topic>Thermoelectricity</topic><topic>Transport properties</topic><topic>Waste heat recovery</topic><topic>X-rays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Serbesa, Ayansa Tolesa</creatorcontrib><creatorcontrib>Pal, Varinder</creatorcontrib><creatorcontrib>Sreeram, P. R.</creatorcontrib><creatorcontrib>Legese, Surafel Shiferaw</creatorcontrib><creatorcontrib>Kumar, Bhupendra</creatorcontrib><creatorcontrib>Adamo, Chalchisa Getachew</creatorcontrib><creatorcontrib>Mukherjee, Shriparna</creatorcontrib><creatorcontrib>Paliwal, Manas</creatorcontrib><creatorcontrib>Olu, Femi Emmanuel</creatorcontrib><creatorcontrib>Tiwary, Chandra Sekhar</creatorcontrib><creatorcontrib>Chattopadhyay, Kamanio</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>https://resources.nclive.org/materials</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials science collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><jtitle>Journal of materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Serbesa, Ayansa Tolesa</au><au>Pal, Varinder</au><au>Sreeram, P. R.</au><au>Legese, Surafel Shiferaw</au><au>Kumar, Bhupendra</au><au>Adamo, Chalchisa Getachew</au><au>Mukherjee, Shriparna</au><au>Paliwal, Manas</au><au>Olu, Femi Emmanuel</au><au>Tiwary, Chandra Sekhar</au><au>Chattopadhyay, Kamanio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Transport properties and microstructural evolution of Bi–Cu–Te ternary alloys</atitle><jtitle>Journal of materials science</jtitle><stitle>J Mater Sci</stitle><date>2023-11-01</date><risdate>2023</risdate><volume>58</volume><issue>42</issue><spage>16462</spage><epage>16473</epage><pages>16462-16473</pages><issn>0022-2461</issn><eissn>1573-4803</eissn><abstract>This study delves into the profound influence of defects and their evolution within the microstructure on the thermoelectric transport properties, with a primary focus on the Bi–Cu–Te ternary system. By systematically investigating the intricate relationships between composition, microstructure, and thermoelectric properties, this research offers a comprehensive framework for optimizing these alloys in potential thermoelectric applications. The candidate alloy compositions were selected using a self-consistent thermodynamically optimized database of Bi–Cu–Te and synthesized using flame melting. The microstructure evolution was characterized using X-ray diffraction, scanning electron microscope, and electron probe microanalyzer. The presence of γCu
3
Te
2
intermetallic significantly enhanced hardness, with optimized compositions showing a doubling of hardness compared to conventional BiSbTe alloys. The observed morphologies of each alloy and their thermoelectric properties correlate with the Cu concentration variations. An optimized composition exhibited excellent electrical conductivity of 100 kS/m, Seebeck coefficient of − 145 μV/K, and power factor of 1.85 mW/mK
2
. These results provide insights into tailoring the composition and microstructure of Bi–Cu–Te alloys to improve their efficiency for thermoelectric waste heat recovery.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10853-023-09004-2</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-9760-9768</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-2461 |
ispartof | Journal of materials science, 2023-11, Vol.58 (42), p.16462-16473 |
issn | 0022-2461 1573-4803 |
language | eng |
recordid | cdi_proquest_journals_2888485874 |
source | Springer Nature |
subjects | Alloys Characterization and Evaluation of Materials Chemistry and Materials Science Classical Mechanics Crystallography and Scattering Methods Diffraction Electric properties Electrical conductivity Electrical resistivity Electron probes Evolution Hardness Intermetallic compounds Materials Science Mechanical properties Metals & Corrosion Microstructure Polymer Sciences Power factor Seebeck effect Solid Mechanics Specialty metals industry Tellurium Ternary alloys Ternary systems Thermoelectricity Transport properties Waste heat recovery X-rays |
title | Transport properties and microstructural evolution of Bi–Cu–Te ternary alloys |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T12%3A49%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Transport%20properties%20and%20microstructural%20evolution%20of%20Bi%E2%80%93Cu%E2%80%93Te%20ternary%20alloys&rft.jtitle=Journal%20of%20materials%20science&rft.au=Serbesa,%20Ayansa%20Tolesa&rft.date=2023-11-01&rft.volume=58&rft.issue=42&rft.spage=16462&rft.epage=16473&rft.pages=16462-16473&rft.issn=0022-2461&rft.eissn=1573-4803&rft_id=info:doi/10.1007/s10853-023-09004-2&rft_dat=%3Cgale_proqu%3EA772377969%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c343t-f6b245115b788e71ef005afd0f0bb815040caa150f70824dfd8468baefd45e8a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2888485874&rft_id=info:pmid/&rft_galeid=A772377969&rfr_iscdi=true |