Loading…

Transport properties and microstructural evolution of Bi–Cu–Te ternary alloys

This study delves into the profound influence of defects and their evolution within the microstructure on the thermoelectric transport properties, with a primary focus on the Bi–Cu–Te ternary system. By systematically investigating the intricate relationships between composition, microstructure, and...

Full description

Saved in:
Bibliographic Details
Published in:Journal of materials science 2023-11, Vol.58 (42), p.16462-16473
Main Authors: Serbesa, Ayansa Tolesa, Pal, Varinder, Sreeram, P. R., Legese, Surafel Shiferaw, Kumar, Bhupendra, Adamo, Chalchisa Getachew, Mukherjee, Shriparna, Paliwal, Manas, Olu, Femi Emmanuel, Tiwary, Chandra Sekhar, Chattopadhyay, Kamanio
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c343t-f6b245115b788e71ef005afd0f0bb815040caa150f70824dfd8468baefd45e8a3
container_end_page 16473
container_issue 42
container_start_page 16462
container_title Journal of materials science
container_volume 58
creator Serbesa, Ayansa Tolesa
Pal, Varinder
Sreeram, P. R.
Legese, Surafel Shiferaw
Kumar, Bhupendra
Adamo, Chalchisa Getachew
Mukherjee, Shriparna
Paliwal, Manas
Olu, Femi Emmanuel
Tiwary, Chandra Sekhar
Chattopadhyay, Kamanio
description This study delves into the profound influence of defects and their evolution within the microstructure on the thermoelectric transport properties, with a primary focus on the Bi–Cu–Te ternary system. By systematically investigating the intricate relationships between composition, microstructure, and thermoelectric properties, this research offers a comprehensive framework for optimizing these alloys in potential thermoelectric applications. The candidate alloy compositions were selected using a self-consistent thermodynamically optimized database of Bi–Cu–Te and synthesized using flame melting. The microstructure evolution was characterized using X-ray diffraction, scanning electron microscope, and electron probe microanalyzer. The presence of γCu 3 Te 2 intermetallic significantly enhanced hardness, with optimized compositions showing a doubling of hardness compared to conventional BiSbTe alloys. The observed morphologies of each alloy and their thermoelectric properties correlate with the Cu concentration variations. An optimized composition exhibited excellent electrical conductivity of 100 kS/m, Seebeck coefficient of − 145 μV/K, and power factor of 1.85 mW/mK 2 . These results provide insights into tailoring the composition and microstructure of Bi–Cu–Te alloys to improve their efficiency for thermoelectric waste heat recovery.
doi_str_mv 10.1007/s10853-023-09004-2
format article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2888485874</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A772377969</galeid><sourcerecordid>A772377969</sourcerecordid><originalsourceid>FETCH-LOGICAL-c343t-f6b245115b788e71ef005afd0f0bb815040caa150f70824dfd8468baefd45e8a3</originalsourceid><addsrcrecordid>eNp9kc1KxDAUhYMoOP68gKuCKxfVmzSdZJbj4M-AIOq4Dml7M3ToNDVJxdn5Dr6hT2K0gsxGws2Fy3fCyT2EnFA4pwDiwlOQeZYCizUB4CnbISOaiyzlErJdMgJgLGV8TPfJgfcrAMgFoyPysHC69Z11Iemc7dCFGn2i2ypZ16WzPri-DL3TTYKvtulDbdvEmuSy_nz_mPXxWmAS0LXabRLdNHbjj8ie0Y3H499-SJ6vrxaz2_Tu_mY-m96lZcazkJpxwXhOaV4IKVFQNNGSNhUYKApJc-BQah27ESAZr0wl-VgWGk3Fc5Q6OySnw7vR90uPPqiV7aORxismpeQyl4JH6nyglrpBVbfGBqfLeCqMH7QtmjrOp0KwTIjJeBIFZ1uCyAR8C0vde6_mT4_bLBvY7015h0Z1rl7HVSgK6jsXNeSiYi7qJxfFoigbRD7C7RLdn-9_VF91hJHs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2888485874</pqid></control><display><type>article</type><title>Transport properties and microstructural evolution of Bi–Cu–Te ternary alloys</title><source>Springer Nature</source><creator>Serbesa, Ayansa Tolesa ; Pal, Varinder ; Sreeram, P. R. ; Legese, Surafel Shiferaw ; Kumar, Bhupendra ; Adamo, Chalchisa Getachew ; Mukherjee, Shriparna ; Paliwal, Manas ; Olu, Femi Emmanuel ; Tiwary, Chandra Sekhar ; Chattopadhyay, Kamanio</creator><creatorcontrib>Serbesa, Ayansa Tolesa ; Pal, Varinder ; Sreeram, P. R. ; Legese, Surafel Shiferaw ; Kumar, Bhupendra ; Adamo, Chalchisa Getachew ; Mukherjee, Shriparna ; Paliwal, Manas ; Olu, Femi Emmanuel ; Tiwary, Chandra Sekhar ; Chattopadhyay, Kamanio</creatorcontrib><description>This study delves into the profound influence of defects and their evolution within the microstructure on the thermoelectric transport properties, with a primary focus on the Bi–Cu–Te ternary system. By systematically investigating the intricate relationships between composition, microstructure, and thermoelectric properties, this research offers a comprehensive framework for optimizing these alloys in potential thermoelectric applications. The candidate alloy compositions were selected using a self-consistent thermodynamically optimized database of Bi–Cu–Te and synthesized using flame melting. The microstructure evolution was characterized using X-ray diffraction, scanning electron microscope, and electron probe microanalyzer. The presence of γCu 3 Te 2 intermetallic significantly enhanced hardness, with optimized compositions showing a doubling of hardness compared to conventional BiSbTe alloys. The observed morphologies of each alloy and their thermoelectric properties correlate with the Cu concentration variations. An optimized composition exhibited excellent electrical conductivity of 100 kS/m, Seebeck coefficient of − 145 μV/K, and power factor of 1.85 mW/mK 2 . These results provide insights into tailoring the composition and microstructure of Bi–Cu–Te alloys to improve their efficiency for thermoelectric waste heat recovery.</description><identifier>ISSN: 0022-2461</identifier><identifier>EISSN: 1573-4803</identifier><identifier>DOI: 10.1007/s10853-023-09004-2</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Alloys ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Classical Mechanics ; Crystallography and Scattering Methods ; Diffraction ; Electric properties ; Electrical conductivity ; Electrical resistivity ; Electron probes ; Evolution ; Hardness ; Intermetallic compounds ; Materials Science ; Mechanical properties ; Metals &amp; Corrosion ; Microstructure ; Polymer Sciences ; Power factor ; Seebeck effect ; Solid Mechanics ; Specialty metals industry ; Tellurium ; Ternary alloys ; Ternary systems ; Thermoelectricity ; Transport properties ; Waste heat recovery ; X-rays</subject><ispartof>Journal of materials science, 2023-11, Vol.58 (42), p.16462-16473</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>COPYRIGHT 2023 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c343t-f6b245115b788e71ef005afd0f0bb815040caa150f70824dfd8468baefd45e8a3</cites><orcidid>0000-0001-9760-9768</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Serbesa, Ayansa Tolesa</creatorcontrib><creatorcontrib>Pal, Varinder</creatorcontrib><creatorcontrib>Sreeram, P. R.</creatorcontrib><creatorcontrib>Legese, Surafel Shiferaw</creatorcontrib><creatorcontrib>Kumar, Bhupendra</creatorcontrib><creatorcontrib>Adamo, Chalchisa Getachew</creatorcontrib><creatorcontrib>Mukherjee, Shriparna</creatorcontrib><creatorcontrib>Paliwal, Manas</creatorcontrib><creatorcontrib>Olu, Femi Emmanuel</creatorcontrib><creatorcontrib>Tiwary, Chandra Sekhar</creatorcontrib><creatorcontrib>Chattopadhyay, Kamanio</creatorcontrib><title>Transport properties and microstructural evolution of Bi–Cu–Te ternary alloys</title><title>Journal of materials science</title><addtitle>J Mater Sci</addtitle><description>This study delves into the profound influence of defects and their evolution within the microstructure on the thermoelectric transport properties, with a primary focus on the Bi–Cu–Te ternary system. By systematically investigating the intricate relationships between composition, microstructure, and thermoelectric properties, this research offers a comprehensive framework for optimizing these alloys in potential thermoelectric applications. The candidate alloy compositions were selected using a self-consistent thermodynamically optimized database of Bi–Cu–Te and synthesized using flame melting. The microstructure evolution was characterized using X-ray diffraction, scanning electron microscope, and electron probe microanalyzer. The presence of γCu 3 Te 2 intermetallic significantly enhanced hardness, with optimized compositions showing a doubling of hardness compared to conventional BiSbTe alloys. The observed morphologies of each alloy and their thermoelectric properties correlate with the Cu concentration variations. An optimized composition exhibited excellent electrical conductivity of 100 kS/m, Seebeck coefficient of − 145 μV/K, and power factor of 1.85 mW/mK 2 . These results provide insights into tailoring the composition and microstructure of Bi–Cu–Te alloys to improve their efficiency for thermoelectric waste heat recovery.</description><subject>Alloys</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Classical Mechanics</subject><subject>Crystallography and Scattering Methods</subject><subject>Diffraction</subject><subject>Electric properties</subject><subject>Electrical conductivity</subject><subject>Electrical resistivity</subject><subject>Electron probes</subject><subject>Evolution</subject><subject>Hardness</subject><subject>Intermetallic compounds</subject><subject>Materials Science</subject><subject>Mechanical properties</subject><subject>Metals &amp; Corrosion</subject><subject>Microstructure</subject><subject>Polymer Sciences</subject><subject>Power factor</subject><subject>Seebeck effect</subject><subject>Solid Mechanics</subject><subject>Specialty metals industry</subject><subject>Tellurium</subject><subject>Ternary alloys</subject><subject>Ternary systems</subject><subject>Thermoelectricity</subject><subject>Transport properties</subject><subject>Waste heat recovery</subject><subject>X-rays</subject><issn>0022-2461</issn><issn>1573-4803</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kc1KxDAUhYMoOP68gKuCKxfVmzSdZJbj4M-AIOq4Dml7M3ToNDVJxdn5Dr6hT2K0gsxGws2Fy3fCyT2EnFA4pwDiwlOQeZYCizUB4CnbISOaiyzlErJdMgJgLGV8TPfJgfcrAMgFoyPysHC69Z11Iemc7dCFGn2i2ypZ16WzPri-DL3TTYKvtulDbdvEmuSy_nz_mPXxWmAS0LXabRLdNHbjj8ie0Y3H499-SJ6vrxaz2_Tu_mY-m96lZcazkJpxwXhOaV4IKVFQNNGSNhUYKApJc-BQah27ESAZr0wl-VgWGk3Fc5Q6OySnw7vR90uPPqiV7aORxismpeQyl4JH6nyglrpBVbfGBqfLeCqMH7QtmjrOp0KwTIjJeBIFZ1uCyAR8C0vde6_mT4_bLBvY7015h0Z1rl7HVSgK6jsXNeSiYi7qJxfFoigbRD7C7RLdn-9_VF91hJHs</recordid><startdate>20231101</startdate><enddate>20231101</enddate><creator>Serbesa, Ayansa Tolesa</creator><creator>Pal, Varinder</creator><creator>Sreeram, P. R.</creator><creator>Legese, Surafel Shiferaw</creator><creator>Kumar, Bhupendra</creator><creator>Adamo, Chalchisa Getachew</creator><creator>Mukherjee, Shriparna</creator><creator>Paliwal, Manas</creator><creator>Olu, Femi Emmanuel</creator><creator>Tiwary, Chandra Sekhar</creator><creator>Chattopadhyay, Kamanio</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0001-9760-9768</orcidid></search><sort><creationdate>20231101</creationdate><title>Transport properties and microstructural evolution of Bi–Cu–Te ternary alloys</title><author>Serbesa, Ayansa Tolesa ; Pal, Varinder ; Sreeram, P. R. ; Legese, Surafel Shiferaw ; Kumar, Bhupendra ; Adamo, Chalchisa Getachew ; Mukherjee, Shriparna ; Paliwal, Manas ; Olu, Femi Emmanuel ; Tiwary, Chandra Sekhar ; Chattopadhyay, Kamanio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c343t-f6b245115b788e71ef005afd0f0bb815040caa150f70824dfd8468baefd45e8a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Alloys</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Classical Mechanics</topic><topic>Crystallography and Scattering Methods</topic><topic>Diffraction</topic><topic>Electric properties</topic><topic>Electrical conductivity</topic><topic>Electrical resistivity</topic><topic>Electron probes</topic><topic>Evolution</topic><topic>Hardness</topic><topic>Intermetallic compounds</topic><topic>Materials Science</topic><topic>Mechanical properties</topic><topic>Metals &amp; Corrosion</topic><topic>Microstructure</topic><topic>Polymer Sciences</topic><topic>Power factor</topic><topic>Seebeck effect</topic><topic>Solid Mechanics</topic><topic>Specialty metals industry</topic><topic>Tellurium</topic><topic>Ternary alloys</topic><topic>Ternary systems</topic><topic>Thermoelectricity</topic><topic>Transport properties</topic><topic>Waste heat recovery</topic><topic>X-rays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Serbesa, Ayansa Tolesa</creatorcontrib><creatorcontrib>Pal, Varinder</creatorcontrib><creatorcontrib>Sreeram, P. R.</creatorcontrib><creatorcontrib>Legese, Surafel Shiferaw</creatorcontrib><creatorcontrib>Kumar, Bhupendra</creatorcontrib><creatorcontrib>Adamo, Chalchisa Getachew</creatorcontrib><creatorcontrib>Mukherjee, Shriparna</creatorcontrib><creatorcontrib>Paliwal, Manas</creatorcontrib><creatorcontrib>Olu, Femi Emmanuel</creatorcontrib><creatorcontrib>Tiwary, Chandra Sekhar</creatorcontrib><creatorcontrib>Chattopadhyay, Kamanio</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>https://resources.nclive.org/materials</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials science collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><jtitle>Journal of materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Serbesa, Ayansa Tolesa</au><au>Pal, Varinder</au><au>Sreeram, P. R.</au><au>Legese, Surafel Shiferaw</au><au>Kumar, Bhupendra</au><au>Adamo, Chalchisa Getachew</au><au>Mukherjee, Shriparna</au><au>Paliwal, Manas</au><au>Olu, Femi Emmanuel</au><au>Tiwary, Chandra Sekhar</au><au>Chattopadhyay, Kamanio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Transport properties and microstructural evolution of Bi–Cu–Te ternary alloys</atitle><jtitle>Journal of materials science</jtitle><stitle>J Mater Sci</stitle><date>2023-11-01</date><risdate>2023</risdate><volume>58</volume><issue>42</issue><spage>16462</spage><epage>16473</epage><pages>16462-16473</pages><issn>0022-2461</issn><eissn>1573-4803</eissn><abstract>This study delves into the profound influence of defects and their evolution within the microstructure on the thermoelectric transport properties, with a primary focus on the Bi–Cu–Te ternary system. By systematically investigating the intricate relationships between composition, microstructure, and thermoelectric properties, this research offers a comprehensive framework for optimizing these alloys in potential thermoelectric applications. The candidate alloy compositions were selected using a self-consistent thermodynamically optimized database of Bi–Cu–Te and synthesized using flame melting. The microstructure evolution was characterized using X-ray diffraction, scanning electron microscope, and electron probe microanalyzer. The presence of γCu 3 Te 2 intermetallic significantly enhanced hardness, with optimized compositions showing a doubling of hardness compared to conventional BiSbTe alloys. The observed morphologies of each alloy and their thermoelectric properties correlate with the Cu concentration variations. An optimized composition exhibited excellent electrical conductivity of 100 kS/m, Seebeck coefficient of − 145 μV/K, and power factor of 1.85 mW/mK 2 . These results provide insights into tailoring the composition and microstructure of Bi–Cu–Te alloys to improve their efficiency for thermoelectric waste heat recovery.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10853-023-09004-2</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-9760-9768</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0022-2461
ispartof Journal of materials science, 2023-11, Vol.58 (42), p.16462-16473
issn 0022-2461
1573-4803
language eng
recordid cdi_proquest_journals_2888485874
source Springer Nature
subjects Alloys
Characterization and Evaluation of Materials
Chemistry and Materials Science
Classical Mechanics
Crystallography and Scattering Methods
Diffraction
Electric properties
Electrical conductivity
Electrical resistivity
Electron probes
Evolution
Hardness
Intermetallic compounds
Materials Science
Mechanical properties
Metals & Corrosion
Microstructure
Polymer Sciences
Power factor
Seebeck effect
Solid Mechanics
Specialty metals industry
Tellurium
Ternary alloys
Ternary systems
Thermoelectricity
Transport properties
Waste heat recovery
X-rays
title Transport properties and microstructural evolution of Bi–Cu–Te ternary alloys
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T12%3A49%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Transport%20properties%20and%20microstructural%20evolution%20of%20Bi%E2%80%93Cu%E2%80%93Te%20ternary%20alloys&rft.jtitle=Journal%20of%20materials%20science&rft.au=Serbesa,%20Ayansa%20Tolesa&rft.date=2023-11-01&rft.volume=58&rft.issue=42&rft.spage=16462&rft.epage=16473&rft.pages=16462-16473&rft.issn=0022-2461&rft.eissn=1573-4803&rft_id=info:doi/10.1007/s10853-023-09004-2&rft_dat=%3Cgale_proqu%3EA772377969%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c343t-f6b245115b788e71ef005afd0f0bb815040caa150f70824dfd8468baefd45e8a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2888485874&rft_id=info:pmid/&rft_galeid=A772377969&rfr_iscdi=true