Loading…
Modelling biophysical parameters of Indian Sundarbans mangroves using fully polarimetric L-band Synthetic Aperture Radar data and ground observations
Mangroves are one of the important coastal ecosystems in the world and Sundarbans is one of the major blocks of mangrove ecosystem. Indian covers 40% of the total Sundarbans mangrove area, while the remaining 60% is located in Bangladesh. For mangrove forest assessment and their sustainable manageme...
Saved in:
Published in: | Journal of coastal conservation 2023-12, Vol.27 (6), p.62, Article 62 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c270t-1d45b176d9e7db0b01299219bc33fc48a12d8d36659ebd33d94036fee97c61f93 |
container_end_page | |
container_issue | 6 |
container_start_page | 62 |
container_title | Journal of coastal conservation |
container_volume | 27 |
creator | Kumar, Tanumi Das, Prabir Kumar Dey, Mansa Bandyopadhyay, Soumya Chandrasekar, K. Das, Anup Kumar |
description | Mangroves are one of the important coastal ecosystems in the world and Sundarbans is one of the major blocks of mangrove ecosystem. Indian covers 40% of the total Sundarbans mangrove area, while the remaining 60% is located in Bangladesh. For mangrove forest assessment and their sustainable management, there is need to estimate the forest biophysical/ structural attributes. The present study investigates some of the biophysical properties of mangrove vegetation of south-western part of Indian Sundarbans using L-band fully polarimetric Advanced Land Observation Satellite-2 (ALOS-2) Phased Array L-band Synthetic Aperture Radar-2 (PALSAR-2) data and field observations. The backscattering coefficients for all mangrove communities of the study area were computed where the cross polarizations (HV and VH) showed better potentiality for discrimination of the communities. Biophysical parameters of mangrove forest trees were modelled using multiple linear regressions. Synthetic Aperture Radar backscattering coefficients and some of the biophysical parameters were used as independent variables for basal area (BA) and aboveground biomass (AGB) estimations with the highest model R square value of 0.632 and 0.717, respectively. The validation root mean square error (RMSE) achieved in case of BA was 3.66 m
2
/ha, while the lowest validation RMSE attained for AGB was 46.10 Mg/ha. The methodology presented in the work may be applied for the entire Sundarbans (including both the remaining Indian part and the Bangladesh mangroves). |
doi_str_mv | 10.1007/s11852-023-00994-4 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2888701457</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2888701457</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-1d45b176d9e7db0b01299219bc33fc48a12d8d36659ebd33d94036fee97c61f93</originalsourceid><addsrcrecordid>eNp9kMtKxDAUhosoqKMv4CrgOnpyaZMsZfAyMCJ4WYe0SccOnaQmrTAP4vuacQR3rnII3_8dzl8UFwSuCIC4ToTIkmKgDAMoxTE_KE6IFBwLyclhnjkABlbCcXGa0hqAlrJkJ8XXY7Cu7zu_QnUXhvdt6hrTo8FEs3GjiwmFFi287YxHL5O3JtbGJ7QxfhXDp0toSrtsO_X9Fg2hN7HLudg1aIkzadHL1o_vbswfN4OL4xQdejZZg6wZDdoRWZTFKNTJxU8zdsGns-KoNX1y57_vrHi7u32dP-Dl0_1ifrPEDRUwYmJ5WRNRWeWEraEGQpWiRNUNY23DpSHUSsuqqlSutoxZxYFVrXNKNBVpFZsVl3vvEMPH5NKo12GKPq_UVEopgPBSZIruqSaGlKJr9ZCvNHGrCehd_Xpfv87165_6Nc8htg-lDPuVi3_qf1LfKWeLfw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2888701457</pqid></control><display><type>article</type><title>Modelling biophysical parameters of Indian Sundarbans mangroves using fully polarimetric L-band Synthetic Aperture Radar data and ground observations</title><source>Springer Link</source><creator>Kumar, Tanumi ; Das, Prabir Kumar ; Dey, Mansa ; Bandyopadhyay, Soumya ; Chandrasekar, K. ; Das, Anup Kumar</creator><creatorcontrib>Kumar, Tanumi ; Das, Prabir Kumar ; Dey, Mansa ; Bandyopadhyay, Soumya ; Chandrasekar, K. ; Das, Anup Kumar</creatorcontrib><description>Mangroves are one of the important coastal ecosystems in the world and Sundarbans is one of the major blocks of mangrove ecosystem. Indian covers 40% of the total Sundarbans mangrove area, while the remaining 60% is located in Bangladesh. For mangrove forest assessment and their sustainable management, there is need to estimate the forest biophysical/ structural attributes. The present study investigates some of the biophysical properties of mangrove vegetation of south-western part of Indian Sundarbans using L-band fully polarimetric Advanced Land Observation Satellite-2 (ALOS-2) Phased Array L-band Synthetic Aperture Radar-2 (PALSAR-2) data and field observations. The backscattering coefficients for all mangrove communities of the study area were computed where the cross polarizations (HV and VH) showed better potentiality for discrimination of the communities. Biophysical parameters of mangrove forest trees were modelled using multiple linear regressions. Synthetic Aperture Radar backscattering coefficients and some of the biophysical parameters were used as independent variables for basal area (BA) and aboveground biomass (AGB) estimations with the highest model R square value of 0.632 and 0.717, respectively. The validation root mean square error (RMSE) achieved in case of BA was 3.66 m
2
/ha, while the lowest validation RMSE attained for AGB was 46.10 Mg/ha. The methodology presented in the work may be applied for the entire Sundarbans (including both the remaining Indian part and the Bangladesh mangroves).</description><identifier>ISSN: 1400-0350</identifier><identifier>EISSN: 1874-7841</identifier><identifier>DOI: 10.1007/s11852-023-00994-4</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Accuracy ; Backscatter ; Backscattering ; Biomass ; Coastal ecosystems ; Coastal Sciences ; Coefficients ; Datasets ; Earth and Environmental Science ; Forests ; Geography ; Independent variables ; Mangrove swamps ; Mangroves ; Mathematical models ; Nature Conservation ; Oceanography ; Parameters ; Phased arrays ; Polarimetry ; Radar ; Radar arrays ; Radar data ; Remote sensing systems ; Remote Sensing/Photogrammetry ; Root-mean-square errors ; SAR (radar) ; Satellite observation ; Sustainability management ; Synthetic aperture radar</subject><ispartof>Journal of coastal conservation, 2023-12, Vol.27 (6), p.62, Article 62</ispartof><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-1d45b176d9e7db0b01299219bc33fc48a12d8d36659ebd33d94036fee97c61f93</cites><orcidid>0000-0002-8804-8847</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Kumar, Tanumi</creatorcontrib><creatorcontrib>Das, Prabir Kumar</creatorcontrib><creatorcontrib>Dey, Mansa</creatorcontrib><creatorcontrib>Bandyopadhyay, Soumya</creatorcontrib><creatorcontrib>Chandrasekar, K.</creatorcontrib><creatorcontrib>Das, Anup Kumar</creatorcontrib><title>Modelling biophysical parameters of Indian Sundarbans mangroves using fully polarimetric L-band Synthetic Aperture Radar data and ground observations</title><title>Journal of coastal conservation</title><addtitle>J Coast Conserv</addtitle><description>Mangroves are one of the important coastal ecosystems in the world and Sundarbans is one of the major blocks of mangrove ecosystem. Indian covers 40% of the total Sundarbans mangrove area, while the remaining 60% is located in Bangladesh. For mangrove forest assessment and their sustainable management, there is need to estimate the forest biophysical/ structural attributes. The present study investigates some of the biophysical properties of mangrove vegetation of south-western part of Indian Sundarbans using L-band fully polarimetric Advanced Land Observation Satellite-2 (ALOS-2) Phased Array L-band Synthetic Aperture Radar-2 (PALSAR-2) data and field observations. The backscattering coefficients for all mangrove communities of the study area were computed where the cross polarizations (HV and VH) showed better potentiality for discrimination of the communities. Biophysical parameters of mangrove forest trees were modelled using multiple linear regressions. Synthetic Aperture Radar backscattering coefficients and some of the biophysical parameters were used as independent variables for basal area (BA) and aboveground biomass (AGB) estimations with the highest model R square value of 0.632 and 0.717, respectively. The validation root mean square error (RMSE) achieved in case of BA was 3.66 m
2
/ha, while the lowest validation RMSE attained for AGB was 46.10 Mg/ha. The methodology presented in the work may be applied for the entire Sundarbans (including both the remaining Indian part and the Bangladesh mangroves).</description><subject>Accuracy</subject><subject>Backscatter</subject><subject>Backscattering</subject><subject>Biomass</subject><subject>Coastal ecosystems</subject><subject>Coastal Sciences</subject><subject>Coefficients</subject><subject>Datasets</subject><subject>Earth and Environmental Science</subject><subject>Forests</subject><subject>Geography</subject><subject>Independent variables</subject><subject>Mangrove swamps</subject><subject>Mangroves</subject><subject>Mathematical models</subject><subject>Nature Conservation</subject><subject>Oceanography</subject><subject>Parameters</subject><subject>Phased arrays</subject><subject>Polarimetry</subject><subject>Radar</subject><subject>Radar arrays</subject><subject>Radar data</subject><subject>Remote sensing systems</subject><subject>Remote Sensing/Photogrammetry</subject><subject>Root-mean-square errors</subject><subject>SAR (radar)</subject><subject>Satellite observation</subject><subject>Sustainability management</subject><subject>Synthetic aperture radar</subject><issn>1400-0350</issn><issn>1874-7841</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKxDAUhosoqKMv4CrgOnpyaZMsZfAyMCJ4WYe0SccOnaQmrTAP4vuacQR3rnII3_8dzl8UFwSuCIC4ToTIkmKgDAMoxTE_KE6IFBwLyclhnjkABlbCcXGa0hqAlrJkJ8XXY7Cu7zu_QnUXhvdt6hrTo8FEs3GjiwmFFi287YxHL5O3JtbGJ7QxfhXDp0toSrtsO_X9Fg2hN7HLudg1aIkzadHL1o_vbswfN4OL4xQdejZZg6wZDdoRWZTFKNTJxU8zdsGns-KoNX1y57_vrHi7u32dP-Dl0_1ifrPEDRUwYmJ5WRNRWeWEraEGQpWiRNUNY23DpSHUSsuqqlSutoxZxYFVrXNKNBVpFZsVl3vvEMPH5NKo12GKPq_UVEopgPBSZIruqSaGlKJr9ZCvNHGrCehd_Xpfv87165_6Nc8htg-lDPuVi3_qf1LfKWeLfw</recordid><startdate>20231201</startdate><enddate>20231201</enddate><creator>Kumar, Tanumi</creator><creator>Das, Prabir Kumar</creator><creator>Dey, Mansa</creator><creator>Bandyopadhyay, Soumya</creator><creator>Chandrasekar, K.</creator><creator>Das, Anup Kumar</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SN</scope><scope>7ST</scope><scope>7TN</scope><scope>7U6</scope><scope>7XB</scope><scope>88I</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H97</scope><scope>HCIFZ</scope><scope>L.G</scope><scope>M2P</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-8804-8847</orcidid></search><sort><creationdate>20231201</creationdate><title>Modelling biophysical parameters of Indian Sundarbans mangroves using fully polarimetric L-band Synthetic Aperture Radar data and ground observations</title><author>Kumar, Tanumi ; Das, Prabir Kumar ; Dey, Mansa ; Bandyopadhyay, Soumya ; Chandrasekar, K. ; Das, Anup Kumar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-1d45b176d9e7db0b01299219bc33fc48a12d8d36659ebd33d94036fee97c61f93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Accuracy</topic><topic>Backscatter</topic><topic>Backscattering</topic><topic>Biomass</topic><topic>Coastal ecosystems</topic><topic>Coastal Sciences</topic><topic>Coefficients</topic><topic>Datasets</topic><topic>Earth and Environmental Science</topic><topic>Forests</topic><topic>Geography</topic><topic>Independent variables</topic><topic>Mangrove swamps</topic><topic>Mangroves</topic><topic>Mathematical models</topic><topic>Nature Conservation</topic><topic>Oceanography</topic><topic>Parameters</topic><topic>Phased arrays</topic><topic>Polarimetry</topic><topic>Radar</topic><topic>Radar arrays</topic><topic>Radar data</topic><topic>Remote sensing systems</topic><topic>Remote Sensing/Photogrammetry</topic><topic>Root-mean-square errors</topic><topic>SAR (radar)</topic><topic>Satellite observation</topic><topic>Sustainability management</topic><topic>Synthetic aperture radar</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kumar, Tanumi</creatorcontrib><creatorcontrib>Das, Prabir Kumar</creatorcontrib><creatorcontrib>Dey, Mansa</creatorcontrib><creatorcontrib>Bandyopadhyay, Soumya</creatorcontrib><creatorcontrib>Chandrasekar, K.</creatorcontrib><creatorcontrib>Das, Anup Kumar</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Ecology Abstracts</collection><collection>Environment Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality</collection><collection>SciTech Premium Collection</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Science Journals</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Environment Abstracts</collection><jtitle>Journal of coastal conservation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kumar, Tanumi</au><au>Das, Prabir Kumar</au><au>Dey, Mansa</au><au>Bandyopadhyay, Soumya</au><au>Chandrasekar, K.</au><au>Das, Anup Kumar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modelling biophysical parameters of Indian Sundarbans mangroves using fully polarimetric L-band Synthetic Aperture Radar data and ground observations</atitle><jtitle>Journal of coastal conservation</jtitle><stitle>J Coast Conserv</stitle><date>2023-12-01</date><risdate>2023</risdate><volume>27</volume><issue>6</issue><spage>62</spage><pages>62-</pages><artnum>62</artnum><issn>1400-0350</issn><eissn>1874-7841</eissn><abstract>Mangroves are one of the important coastal ecosystems in the world and Sundarbans is one of the major blocks of mangrove ecosystem. Indian covers 40% of the total Sundarbans mangrove area, while the remaining 60% is located in Bangladesh. For mangrove forest assessment and their sustainable management, there is need to estimate the forest biophysical/ structural attributes. The present study investigates some of the biophysical properties of mangrove vegetation of south-western part of Indian Sundarbans using L-band fully polarimetric Advanced Land Observation Satellite-2 (ALOS-2) Phased Array L-band Synthetic Aperture Radar-2 (PALSAR-2) data and field observations. The backscattering coefficients for all mangrove communities of the study area were computed where the cross polarizations (HV and VH) showed better potentiality for discrimination of the communities. Biophysical parameters of mangrove forest trees were modelled using multiple linear regressions. Synthetic Aperture Radar backscattering coefficients and some of the biophysical parameters were used as independent variables for basal area (BA) and aboveground biomass (AGB) estimations with the highest model R square value of 0.632 and 0.717, respectively. The validation root mean square error (RMSE) achieved in case of BA was 3.66 m
2
/ha, while the lowest validation RMSE attained for AGB was 46.10 Mg/ha. The methodology presented in the work may be applied for the entire Sundarbans (including both the remaining Indian part and the Bangladesh mangroves).</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11852-023-00994-4</doi><orcidid>https://orcid.org/0000-0002-8804-8847</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1400-0350 |
ispartof | Journal of coastal conservation, 2023-12, Vol.27 (6), p.62, Article 62 |
issn | 1400-0350 1874-7841 |
language | eng |
recordid | cdi_proquest_journals_2888701457 |
source | Springer Link |
subjects | Accuracy Backscatter Backscattering Biomass Coastal ecosystems Coastal Sciences Coefficients Datasets Earth and Environmental Science Forests Geography Independent variables Mangrove swamps Mangroves Mathematical models Nature Conservation Oceanography Parameters Phased arrays Polarimetry Radar Radar arrays Radar data Remote sensing systems Remote Sensing/Photogrammetry Root-mean-square errors SAR (radar) Satellite observation Sustainability management Synthetic aperture radar |
title | Modelling biophysical parameters of Indian Sundarbans mangroves using fully polarimetric L-band Synthetic Aperture Radar data and ground observations |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T04%3A18%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modelling%20biophysical%20parameters%20of%20Indian%20Sundarbans%20mangroves%20using%20fully%20polarimetric%20L-band%20Synthetic%20Aperture%20Radar%20data%20and%20ground%20observations&rft.jtitle=Journal%20of%20coastal%20conservation&rft.au=Kumar,%20Tanumi&rft.date=2023-12-01&rft.volume=27&rft.issue=6&rft.spage=62&rft.pages=62-&rft.artnum=62&rft.issn=1400-0350&rft.eissn=1874-7841&rft_id=info:doi/10.1007/s11852-023-00994-4&rft_dat=%3Cproquest_cross%3E2888701457%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c270t-1d45b176d9e7db0b01299219bc33fc48a12d8d36659ebd33d94036fee97c61f93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2888701457&rft_id=info:pmid/&rfr_iscdi=true |