Loading…

Modelling biophysical parameters of Indian Sundarbans mangroves using fully polarimetric L-band Synthetic Aperture Radar data and ground observations

Mangroves are one of the important coastal ecosystems in the world and Sundarbans is one of the major blocks of mangrove ecosystem. Indian covers 40% of the total Sundarbans mangrove area, while the remaining 60% is located in Bangladesh. For mangrove forest assessment and their sustainable manageme...

Full description

Saved in:
Bibliographic Details
Published in:Journal of coastal conservation 2023-12, Vol.27 (6), p.62, Article 62
Main Authors: Kumar, Tanumi, Das, Prabir Kumar, Dey, Mansa, Bandyopadhyay, Soumya, Chandrasekar, K., Das, Anup Kumar
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c270t-1d45b176d9e7db0b01299219bc33fc48a12d8d36659ebd33d94036fee97c61f93
container_end_page
container_issue 6
container_start_page 62
container_title Journal of coastal conservation
container_volume 27
creator Kumar, Tanumi
Das, Prabir Kumar
Dey, Mansa
Bandyopadhyay, Soumya
Chandrasekar, K.
Das, Anup Kumar
description Mangroves are one of the important coastal ecosystems in the world and Sundarbans is one of the major blocks of mangrove ecosystem. Indian covers 40% of the total Sundarbans mangrove area, while the remaining 60% is located in Bangladesh. For mangrove forest assessment and their sustainable management, there is need to estimate the forest biophysical/ structural attributes. The present study investigates some of the biophysical properties of mangrove vegetation of south-western part of Indian Sundarbans using L-band fully polarimetric Advanced Land Observation Satellite-2 (ALOS-2) Phased Array L-band Synthetic Aperture Radar-2 (PALSAR-2) data and field observations. The backscattering coefficients for all mangrove communities of the study area were computed where the cross polarizations (HV and VH) showed better potentiality for discrimination of the communities. Biophysical parameters of mangrove forest trees were modelled using multiple linear regressions. Synthetic Aperture Radar backscattering coefficients and some of the biophysical parameters were used as independent variables for basal area (BA) and aboveground biomass (AGB) estimations with the highest model R square value of 0.632 and 0.717, respectively. The validation root mean square error (RMSE) achieved in case of BA was 3.66 m 2 /ha, while the lowest validation RMSE attained for AGB was 46.10 Mg/ha. The methodology presented in the work may be applied for the entire Sundarbans (including both the remaining Indian part and the Bangladesh mangroves).
doi_str_mv 10.1007/s11852-023-00994-4
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2888701457</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2888701457</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-1d45b176d9e7db0b01299219bc33fc48a12d8d36659ebd33d94036fee97c61f93</originalsourceid><addsrcrecordid>eNp9kMtKxDAUhosoqKMv4CrgOnpyaZMsZfAyMCJ4WYe0SccOnaQmrTAP4vuacQR3rnII3_8dzl8UFwSuCIC4ToTIkmKgDAMoxTE_KE6IFBwLyclhnjkABlbCcXGa0hqAlrJkJ8XXY7Cu7zu_QnUXhvdt6hrTo8FEs3GjiwmFFi287YxHL5O3JtbGJ7QxfhXDp0toSrtsO_X9Fg2hN7HLudg1aIkzadHL1o_vbswfN4OL4xQdejZZg6wZDdoRWZTFKNTJxU8zdsGns-KoNX1y57_vrHi7u32dP-Dl0_1ifrPEDRUwYmJ5WRNRWeWEraEGQpWiRNUNY23DpSHUSsuqqlSutoxZxYFVrXNKNBVpFZsVl3vvEMPH5NKo12GKPq_UVEopgPBSZIruqSaGlKJr9ZCvNHGrCehd_Xpfv87165_6Nc8htg-lDPuVi3_qf1LfKWeLfw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2888701457</pqid></control><display><type>article</type><title>Modelling biophysical parameters of Indian Sundarbans mangroves using fully polarimetric L-band Synthetic Aperture Radar data and ground observations</title><source>Springer Link</source><creator>Kumar, Tanumi ; Das, Prabir Kumar ; Dey, Mansa ; Bandyopadhyay, Soumya ; Chandrasekar, K. ; Das, Anup Kumar</creator><creatorcontrib>Kumar, Tanumi ; Das, Prabir Kumar ; Dey, Mansa ; Bandyopadhyay, Soumya ; Chandrasekar, K. ; Das, Anup Kumar</creatorcontrib><description>Mangroves are one of the important coastal ecosystems in the world and Sundarbans is one of the major blocks of mangrove ecosystem. Indian covers 40% of the total Sundarbans mangrove area, while the remaining 60% is located in Bangladesh. For mangrove forest assessment and their sustainable management, there is need to estimate the forest biophysical/ structural attributes. The present study investigates some of the biophysical properties of mangrove vegetation of south-western part of Indian Sundarbans using L-band fully polarimetric Advanced Land Observation Satellite-2 (ALOS-2) Phased Array L-band Synthetic Aperture Radar-2 (PALSAR-2) data and field observations. The backscattering coefficients for all mangrove communities of the study area were computed where the cross polarizations (HV and VH) showed better potentiality for discrimination of the communities. Biophysical parameters of mangrove forest trees were modelled using multiple linear regressions. Synthetic Aperture Radar backscattering coefficients and some of the biophysical parameters were used as independent variables for basal area (BA) and aboveground biomass (AGB) estimations with the highest model R square value of 0.632 and 0.717, respectively. The validation root mean square error (RMSE) achieved in case of BA was 3.66 m 2 /ha, while the lowest validation RMSE attained for AGB was 46.10 Mg/ha. The methodology presented in the work may be applied for the entire Sundarbans (including both the remaining Indian part and the Bangladesh mangroves).</description><identifier>ISSN: 1400-0350</identifier><identifier>EISSN: 1874-7841</identifier><identifier>DOI: 10.1007/s11852-023-00994-4</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Accuracy ; Backscatter ; Backscattering ; Biomass ; Coastal ecosystems ; Coastal Sciences ; Coefficients ; Datasets ; Earth and Environmental Science ; Forests ; Geography ; Independent variables ; Mangrove swamps ; Mangroves ; Mathematical models ; Nature Conservation ; Oceanography ; Parameters ; Phased arrays ; Polarimetry ; Radar ; Radar arrays ; Radar data ; Remote sensing systems ; Remote Sensing/Photogrammetry ; Root-mean-square errors ; SAR (radar) ; Satellite observation ; Sustainability management ; Synthetic aperture radar</subject><ispartof>Journal of coastal conservation, 2023-12, Vol.27 (6), p.62, Article 62</ispartof><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-1d45b176d9e7db0b01299219bc33fc48a12d8d36659ebd33d94036fee97c61f93</cites><orcidid>0000-0002-8804-8847</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Kumar, Tanumi</creatorcontrib><creatorcontrib>Das, Prabir Kumar</creatorcontrib><creatorcontrib>Dey, Mansa</creatorcontrib><creatorcontrib>Bandyopadhyay, Soumya</creatorcontrib><creatorcontrib>Chandrasekar, K.</creatorcontrib><creatorcontrib>Das, Anup Kumar</creatorcontrib><title>Modelling biophysical parameters of Indian Sundarbans mangroves using fully polarimetric L-band Synthetic Aperture Radar data and ground observations</title><title>Journal of coastal conservation</title><addtitle>J Coast Conserv</addtitle><description>Mangroves are one of the important coastal ecosystems in the world and Sundarbans is one of the major blocks of mangrove ecosystem. Indian covers 40% of the total Sundarbans mangrove area, while the remaining 60% is located in Bangladesh. For mangrove forest assessment and their sustainable management, there is need to estimate the forest biophysical/ structural attributes. The present study investigates some of the biophysical properties of mangrove vegetation of south-western part of Indian Sundarbans using L-band fully polarimetric Advanced Land Observation Satellite-2 (ALOS-2) Phased Array L-band Synthetic Aperture Radar-2 (PALSAR-2) data and field observations. The backscattering coefficients for all mangrove communities of the study area were computed where the cross polarizations (HV and VH) showed better potentiality for discrimination of the communities. Biophysical parameters of mangrove forest trees were modelled using multiple linear regressions. Synthetic Aperture Radar backscattering coefficients and some of the biophysical parameters were used as independent variables for basal area (BA) and aboveground biomass (AGB) estimations with the highest model R square value of 0.632 and 0.717, respectively. The validation root mean square error (RMSE) achieved in case of BA was 3.66 m 2 /ha, while the lowest validation RMSE attained for AGB was 46.10 Mg/ha. The methodology presented in the work may be applied for the entire Sundarbans (including both the remaining Indian part and the Bangladesh mangroves).</description><subject>Accuracy</subject><subject>Backscatter</subject><subject>Backscattering</subject><subject>Biomass</subject><subject>Coastal ecosystems</subject><subject>Coastal Sciences</subject><subject>Coefficients</subject><subject>Datasets</subject><subject>Earth and Environmental Science</subject><subject>Forests</subject><subject>Geography</subject><subject>Independent variables</subject><subject>Mangrove swamps</subject><subject>Mangroves</subject><subject>Mathematical models</subject><subject>Nature Conservation</subject><subject>Oceanography</subject><subject>Parameters</subject><subject>Phased arrays</subject><subject>Polarimetry</subject><subject>Radar</subject><subject>Radar arrays</subject><subject>Radar data</subject><subject>Remote sensing systems</subject><subject>Remote Sensing/Photogrammetry</subject><subject>Root-mean-square errors</subject><subject>SAR (radar)</subject><subject>Satellite observation</subject><subject>Sustainability management</subject><subject>Synthetic aperture radar</subject><issn>1400-0350</issn><issn>1874-7841</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKxDAUhosoqKMv4CrgOnpyaZMsZfAyMCJ4WYe0SccOnaQmrTAP4vuacQR3rnII3_8dzl8UFwSuCIC4ToTIkmKgDAMoxTE_KE6IFBwLyclhnjkABlbCcXGa0hqAlrJkJ8XXY7Cu7zu_QnUXhvdt6hrTo8FEs3GjiwmFFi287YxHL5O3JtbGJ7QxfhXDp0toSrtsO_X9Fg2hN7HLudg1aIkzadHL1o_vbswfN4OL4xQdejZZg6wZDdoRWZTFKNTJxU8zdsGns-KoNX1y57_vrHi7u32dP-Dl0_1ifrPEDRUwYmJ5WRNRWeWEraEGQpWiRNUNY23DpSHUSsuqqlSutoxZxYFVrXNKNBVpFZsVl3vvEMPH5NKo12GKPq_UVEopgPBSZIruqSaGlKJr9ZCvNHGrCehd_Xpfv87165_6Nc8htg-lDPuVi3_qf1LfKWeLfw</recordid><startdate>20231201</startdate><enddate>20231201</enddate><creator>Kumar, Tanumi</creator><creator>Das, Prabir Kumar</creator><creator>Dey, Mansa</creator><creator>Bandyopadhyay, Soumya</creator><creator>Chandrasekar, K.</creator><creator>Das, Anup Kumar</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SN</scope><scope>7ST</scope><scope>7TN</scope><scope>7U6</scope><scope>7XB</scope><scope>88I</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H97</scope><scope>HCIFZ</scope><scope>L.G</scope><scope>M2P</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-8804-8847</orcidid></search><sort><creationdate>20231201</creationdate><title>Modelling biophysical parameters of Indian Sundarbans mangroves using fully polarimetric L-band Synthetic Aperture Radar data and ground observations</title><author>Kumar, Tanumi ; Das, Prabir Kumar ; Dey, Mansa ; Bandyopadhyay, Soumya ; Chandrasekar, K. ; Das, Anup Kumar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-1d45b176d9e7db0b01299219bc33fc48a12d8d36659ebd33d94036fee97c61f93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Accuracy</topic><topic>Backscatter</topic><topic>Backscattering</topic><topic>Biomass</topic><topic>Coastal ecosystems</topic><topic>Coastal Sciences</topic><topic>Coefficients</topic><topic>Datasets</topic><topic>Earth and Environmental Science</topic><topic>Forests</topic><topic>Geography</topic><topic>Independent variables</topic><topic>Mangrove swamps</topic><topic>Mangroves</topic><topic>Mathematical models</topic><topic>Nature Conservation</topic><topic>Oceanography</topic><topic>Parameters</topic><topic>Phased arrays</topic><topic>Polarimetry</topic><topic>Radar</topic><topic>Radar arrays</topic><topic>Radar data</topic><topic>Remote sensing systems</topic><topic>Remote Sensing/Photogrammetry</topic><topic>Root-mean-square errors</topic><topic>SAR (radar)</topic><topic>Satellite observation</topic><topic>Sustainability management</topic><topic>Synthetic aperture radar</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kumar, Tanumi</creatorcontrib><creatorcontrib>Das, Prabir Kumar</creatorcontrib><creatorcontrib>Dey, Mansa</creatorcontrib><creatorcontrib>Bandyopadhyay, Soumya</creatorcontrib><creatorcontrib>Chandrasekar, K.</creatorcontrib><creatorcontrib>Das, Anup Kumar</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Ecology Abstracts</collection><collection>Environment Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>SciTech Premium Collection</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Science Journals</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Environment Abstracts</collection><jtitle>Journal of coastal conservation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kumar, Tanumi</au><au>Das, Prabir Kumar</au><au>Dey, Mansa</au><au>Bandyopadhyay, Soumya</au><au>Chandrasekar, K.</au><au>Das, Anup Kumar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modelling biophysical parameters of Indian Sundarbans mangroves using fully polarimetric L-band Synthetic Aperture Radar data and ground observations</atitle><jtitle>Journal of coastal conservation</jtitle><stitle>J Coast Conserv</stitle><date>2023-12-01</date><risdate>2023</risdate><volume>27</volume><issue>6</issue><spage>62</spage><pages>62-</pages><artnum>62</artnum><issn>1400-0350</issn><eissn>1874-7841</eissn><abstract>Mangroves are one of the important coastal ecosystems in the world and Sundarbans is one of the major blocks of mangrove ecosystem. Indian covers 40% of the total Sundarbans mangrove area, while the remaining 60% is located in Bangladesh. For mangrove forest assessment and their sustainable management, there is need to estimate the forest biophysical/ structural attributes. The present study investigates some of the biophysical properties of mangrove vegetation of south-western part of Indian Sundarbans using L-band fully polarimetric Advanced Land Observation Satellite-2 (ALOS-2) Phased Array L-band Synthetic Aperture Radar-2 (PALSAR-2) data and field observations. The backscattering coefficients for all mangrove communities of the study area were computed where the cross polarizations (HV and VH) showed better potentiality for discrimination of the communities. Biophysical parameters of mangrove forest trees were modelled using multiple linear regressions. Synthetic Aperture Radar backscattering coefficients and some of the biophysical parameters were used as independent variables for basal area (BA) and aboveground biomass (AGB) estimations with the highest model R square value of 0.632 and 0.717, respectively. The validation root mean square error (RMSE) achieved in case of BA was 3.66 m 2 /ha, while the lowest validation RMSE attained for AGB was 46.10 Mg/ha. The methodology presented in the work may be applied for the entire Sundarbans (including both the remaining Indian part and the Bangladesh mangroves).</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11852-023-00994-4</doi><orcidid>https://orcid.org/0000-0002-8804-8847</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1400-0350
ispartof Journal of coastal conservation, 2023-12, Vol.27 (6), p.62, Article 62
issn 1400-0350
1874-7841
language eng
recordid cdi_proquest_journals_2888701457
source Springer Link
subjects Accuracy
Backscatter
Backscattering
Biomass
Coastal ecosystems
Coastal Sciences
Coefficients
Datasets
Earth and Environmental Science
Forests
Geography
Independent variables
Mangrove swamps
Mangroves
Mathematical models
Nature Conservation
Oceanography
Parameters
Phased arrays
Polarimetry
Radar
Radar arrays
Radar data
Remote sensing systems
Remote Sensing/Photogrammetry
Root-mean-square errors
SAR (radar)
Satellite observation
Sustainability management
Synthetic aperture radar
title Modelling biophysical parameters of Indian Sundarbans mangroves using fully polarimetric L-band Synthetic Aperture Radar data and ground observations
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T04%3A18%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modelling%20biophysical%20parameters%20of%20Indian%20Sundarbans%20mangroves%20using%20fully%20polarimetric%20L-band%20Synthetic%20Aperture%20Radar%20data%20and%20ground%20observations&rft.jtitle=Journal%20of%20coastal%20conservation&rft.au=Kumar,%20Tanumi&rft.date=2023-12-01&rft.volume=27&rft.issue=6&rft.spage=62&rft.pages=62-&rft.artnum=62&rft.issn=1400-0350&rft.eissn=1874-7841&rft_id=info:doi/10.1007/s11852-023-00994-4&rft_dat=%3Cproquest_cross%3E2888701457%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c270t-1d45b176d9e7db0b01299219bc33fc48a12d8d36659ebd33d94036fee97c61f93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2888701457&rft_id=info:pmid/&rfr_iscdi=true