Loading…
Study of the AlPN/GaN high electron mobility transistors with improved transconductance linearity
In this work, an improved method of metal-organic chemical vapor deposition was utilized to grow high-quality AlPN/GaN heterostructures. The characteristics of AlPN those are essential to achieving high linearity in the resulting devices were then investigated. High linearity AlPN/GaN high electron...
Saved in:
Published in: | Applied physics letters 2023-11, Vol.123 (20) |
---|---|
Main Authors: | , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this work, an improved method of metal-organic chemical vapor deposition was utilized to grow high-quality AlPN/GaN heterostructures. The characteristics of AlPN those are essential to achieving high linearity in the resulting devices were then investigated. High linearity AlPN/GaN high electron mobility transistors (HEMTs) with flatter transconductance curves were fabricated, in which the gate voltage swings are 1.85 and 4.35 V at 300 and 400 K when Gm drops 5% from Gm,max. Additionally, the impact of P anti-site defects and surface states on the high linearity of AlPN/GaN HEMTs at different temperatures was discussed. It was found that while both factors benefit linearity at room temperature, only the P anti-site defects have a positive effect on linearity at high temperatures. The results demonstrate the significant advantages of AlPN-based structures in high linearity device applications and provide instructive principles for improving linearity. |
---|---|
ISSN: | 0003-6951 1077-3118 |
DOI: | 10.1063/5.0172376 |