Loading…
Rigidity results for the p ‐Laplace type equations on compact Riemannian manifolds
In this paper, we obtain two rigidity results for ‐Laplace type equation and ‐Laplace equation with exponential nonlinearity on ‐dimensional compact Riemannian manifolds by using of nonlinear flow and the carré du champ methods, respectively, where rigidity means that the PDE has only constant solut...
Saved in:
Published in: | Mathematical methods in the applied sciences 2023-11, Vol.46 (17), p.18420-18432 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c216t-83b16f093a8fa4d8a5862841599b4151c45ffb664802e950b931f379486c752e3 |
container_end_page | 18432 |
container_issue | 17 |
container_start_page | 18420 |
container_title | Mathematical methods in the applied sciences |
container_volume | 46 |
creator | Wang, Yu‐Zhao Wei, Pei‐Can Zhang, Huiting |
description | In this paper, we obtain two rigidity results for
‐Laplace type equation and
‐Laplace equation with exponential nonlinearity on
‐dimensional compact Riemannian manifolds by using of nonlinear flow and the carré du champ methods, respectively, where rigidity means that the PDE has only constant solution when a parameter is in a certain range. Moreover, an interpolation inequality is derived as an application. |
doi_str_mv | 10.1002/mma.9568 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2889452179</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2889452179</sourcerecordid><originalsourceid>FETCH-LOGICAL-c216t-83b16f093a8fa4d8a5862841599b4151c45ffb664802e950b931f379486c752e3</originalsourceid><addsrcrecordid>eNotkM1KAzEYRYMoWKvgIwTcuJmaL5PJJEsp_kFBKHUdMmmiKTOTaZJZdOcj-Iw-iVPq5p7N5V44CN0CWQAh9KHr9EJWXJyhGRApC2A1P0czAjUpGAV2ia5S2hFCBACdoc3af_qtzwccbRrbnLALEecviwf8-_2z0kOrjcX5MFhs96POPvQJhx6b0A3aZLz2ttN973WPJ3oX2m26RhdOt8ne_HOOPp6fNsvXYvX-8rZ8XBWGAs-FKBvgjshSC6fZVuhKcCoYVFI2U4JhlXMN50wQamVFGlmCK2vJBDd1RW05R3en3SGG_WhTVrswxn66VFQIySoKtZxa96eWiSGlaJ0aou90PCgg6uhMTc7U0Vn5Bw81XsU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2889452179</pqid></control><display><type>article</type><title>Rigidity results for the p ‐Laplace type equations on compact Riemannian manifolds</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Wang, Yu‐Zhao ; Wei, Pei‐Can ; Zhang, Huiting</creator><creatorcontrib>Wang, Yu‐Zhao ; Wei, Pei‐Can ; Zhang, Huiting</creatorcontrib><description>In this paper, we obtain two rigidity results for
‐Laplace type equation and
‐Laplace equation with exponential nonlinearity on
‐dimensional compact Riemannian manifolds by using of nonlinear flow and the carré du champ methods, respectively, where rigidity means that the PDE has only constant solution when a parameter is in a certain range. Moreover, an interpolation inequality is derived as an application.</description><identifier>ISSN: 0170-4214</identifier><identifier>EISSN: 1099-1476</identifier><identifier>DOI: 10.1002/mma.9568</identifier><language>eng</language><publisher>Freiburg: Wiley Subscription Services, Inc</publisher><subject>Interpolation ; Laplace equation ; Nonlinearity ; Riemann manifold ; Rigidity</subject><ispartof>Mathematical methods in the applied sciences, 2023-11, Vol.46 (17), p.18420-18432</ispartof><rights>2023 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c216t-83b16f093a8fa4d8a5862841599b4151c45ffb664802e950b931f379486c752e3</cites><orcidid>0000-0003-0815-4664</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Wang, Yu‐Zhao</creatorcontrib><creatorcontrib>Wei, Pei‐Can</creatorcontrib><creatorcontrib>Zhang, Huiting</creatorcontrib><title>Rigidity results for the p ‐Laplace type equations on compact Riemannian manifolds</title><title>Mathematical methods in the applied sciences</title><description>In this paper, we obtain two rigidity results for
‐Laplace type equation and
‐Laplace equation with exponential nonlinearity on
‐dimensional compact Riemannian manifolds by using of nonlinear flow and the carré du champ methods, respectively, where rigidity means that the PDE has only constant solution when a parameter is in a certain range. Moreover, an interpolation inequality is derived as an application.</description><subject>Interpolation</subject><subject>Laplace equation</subject><subject>Nonlinearity</subject><subject>Riemann manifold</subject><subject>Rigidity</subject><issn>0170-4214</issn><issn>1099-1476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNotkM1KAzEYRYMoWKvgIwTcuJmaL5PJJEsp_kFBKHUdMmmiKTOTaZJZdOcj-Iw-iVPq5p7N5V44CN0CWQAh9KHr9EJWXJyhGRApC2A1P0czAjUpGAV2ia5S2hFCBACdoc3af_qtzwccbRrbnLALEecviwf8-_2z0kOrjcX5MFhs96POPvQJhx6b0A3aZLz2ttN973WPJ3oX2m26RhdOt8ne_HOOPp6fNsvXYvX-8rZ8XBWGAs-FKBvgjshSC6fZVuhKcCoYVFI2U4JhlXMN50wQamVFGlmCK2vJBDd1RW05R3en3SGG_WhTVrswxn66VFQIySoKtZxa96eWiSGlaJ0aou90PCgg6uhMTc7U0Vn5Bw81XsU</recordid><startdate>20231130</startdate><enddate>20231130</enddate><creator>Wang, Yu‐Zhao</creator><creator>Wei, Pei‐Can</creator><creator>Zhang, Huiting</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><orcidid>https://orcid.org/0000-0003-0815-4664</orcidid></search><sort><creationdate>20231130</creationdate><title>Rigidity results for the p ‐Laplace type equations on compact Riemannian manifolds</title><author>Wang, Yu‐Zhao ; Wei, Pei‐Can ; Zhang, Huiting</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c216t-83b16f093a8fa4d8a5862841599b4151c45ffb664802e950b931f379486c752e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Interpolation</topic><topic>Laplace equation</topic><topic>Nonlinearity</topic><topic>Riemann manifold</topic><topic>Rigidity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Yu‐Zhao</creatorcontrib><creatorcontrib>Wei, Pei‐Can</creatorcontrib><creatorcontrib>Zhang, Huiting</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><jtitle>Mathematical methods in the applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Yu‐Zhao</au><au>Wei, Pei‐Can</au><au>Zhang, Huiting</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rigidity results for the p ‐Laplace type equations on compact Riemannian manifolds</atitle><jtitle>Mathematical methods in the applied sciences</jtitle><date>2023-11-30</date><risdate>2023</risdate><volume>46</volume><issue>17</issue><spage>18420</spage><epage>18432</epage><pages>18420-18432</pages><issn>0170-4214</issn><eissn>1099-1476</eissn><abstract>In this paper, we obtain two rigidity results for
‐Laplace type equation and
‐Laplace equation with exponential nonlinearity on
‐dimensional compact Riemannian manifolds by using of nonlinear flow and the carré du champ methods, respectively, where rigidity means that the PDE has only constant solution when a parameter is in a certain range. Moreover, an interpolation inequality is derived as an application.</abstract><cop>Freiburg</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/mma.9568</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-0815-4664</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0170-4214 |
ispartof | Mathematical methods in the applied sciences, 2023-11, Vol.46 (17), p.18420-18432 |
issn | 0170-4214 1099-1476 |
language | eng |
recordid | cdi_proquest_journals_2889452179 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | Interpolation Laplace equation Nonlinearity Riemann manifold Rigidity |
title | Rigidity results for the p ‐Laplace type equations on compact Riemannian manifolds |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T10%3A07%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rigidity%20results%20for%20the%20p%20%E2%80%90Laplace%20type%20equations%20on%20compact%20Riemannian%20manifolds&rft.jtitle=Mathematical%20methods%20in%20the%20applied%20sciences&rft.au=Wang,%20Yu%E2%80%90Zhao&rft.date=2023-11-30&rft.volume=46&rft.issue=17&rft.spage=18420&rft.epage=18432&rft.pages=18420-18432&rft.issn=0170-4214&rft.eissn=1099-1476&rft_id=info:doi/10.1002/mma.9568&rft_dat=%3Cproquest_cross%3E2889452179%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c216t-83b16f093a8fa4d8a5862841599b4151c45ffb664802e950b931f379486c752e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2889452179&rft_id=info:pmid/&rfr_iscdi=true |