Loading…

Rigidity results for the p ‐Laplace type equations on compact Riemannian manifolds

In this paper, we obtain two rigidity results for ‐Laplace type equation and ‐Laplace equation with exponential nonlinearity on ‐dimensional compact Riemannian manifolds by using of nonlinear flow and the carré du champ methods, respectively, where rigidity means that the PDE has only constant solut...

Full description

Saved in:
Bibliographic Details
Published in:Mathematical methods in the applied sciences 2023-11, Vol.46 (17), p.18420-18432
Main Authors: Wang, Yu‐Zhao, Wei, Pei‐Can, Zhang, Huiting
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c216t-83b16f093a8fa4d8a5862841599b4151c45ffb664802e950b931f379486c752e3
container_end_page 18432
container_issue 17
container_start_page 18420
container_title Mathematical methods in the applied sciences
container_volume 46
creator Wang, Yu‐Zhao
Wei, Pei‐Can
Zhang, Huiting
description In this paper, we obtain two rigidity results for ‐Laplace type equation and ‐Laplace equation with exponential nonlinearity on ‐dimensional compact Riemannian manifolds by using of nonlinear flow and the carré du champ methods, respectively, where rigidity means that the PDE has only constant solution when a parameter is in a certain range. Moreover, an interpolation inequality is derived as an application.
doi_str_mv 10.1002/mma.9568
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2889452179</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2889452179</sourcerecordid><originalsourceid>FETCH-LOGICAL-c216t-83b16f093a8fa4d8a5862841599b4151c45ffb664802e950b931f379486c752e3</originalsourceid><addsrcrecordid>eNotkM1KAzEYRYMoWKvgIwTcuJmaL5PJJEsp_kFBKHUdMmmiKTOTaZJZdOcj-Iw-iVPq5p7N5V44CN0CWQAh9KHr9EJWXJyhGRApC2A1P0czAjUpGAV2ia5S2hFCBACdoc3af_qtzwccbRrbnLALEecviwf8-_2z0kOrjcX5MFhs96POPvQJhx6b0A3aZLz2ttN973WPJ3oX2m26RhdOt8ne_HOOPp6fNsvXYvX-8rZ8XBWGAs-FKBvgjshSC6fZVuhKcCoYVFI2U4JhlXMN50wQamVFGlmCK2vJBDd1RW05R3en3SGG_WhTVrswxn66VFQIySoKtZxa96eWiSGlaJ0aou90PCgg6uhMTc7U0Vn5Bw81XsU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2889452179</pqid></control><display><type>article</type><title>Rigidity results for the p ‐Laplace type equations on compact Riemannian manifolds</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Wang, Yu‐Zhao ; Wei, Pei‐Can ; Zhang, Huiting</creator><creatorcontrib>Wang, Yu‐Zhao ; Wei, Pei‐Can ; Zhang, Huiting</creatorcontrib><description>In this paper, we obtain two rigidity results for ‐Laplace type equation and ‐Laplace equation with exponential nonlinearity on ‐dimensional compact Riemannian manifolds by using of nonlinear flow and the carré du champ methods, respectively, where rigidity means that the PDE has only constant solution when a parameter is in a certain range. Moreover, an interpolation inequality is derived as an application.</description><identifier>ISSN: 0170-4214</identifier><identifier>EISSN: 1099-1476</identifier><identifier>DOI: 10.1002/mma.9568</identifier><language>eng</language><publisher>Freiburg: Wiley Subscription Services, Inc</publisher><subject>Interpolation ; Laplace equation ; Nonlinearity ; Riemann manifold ; Rigidity</subject><ispartof>Mathematical methods in the applied sciences, 2023-11, Vol.46 (17), p.18420-18432</ispartof><rights>2023 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c216t-83b16f093a8fa4d8a5862841599b4151c45ffb664802e950b931f379486c752e3</cites><orcidid>0000-0003-0815-4664</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Wang, Yu‐Zhao</creatorcontrib><creatorcontrib>Wei, Pei‐Can</creatorcontrib><creatorcontrib>Zhang, Huiting</creatorcontrib><title>Rigidity results for the p ‐Laplace type equations on compact Riemannian manifolds</title><title>Mathematical methods in the applied sciences</title><description>In this paper, we obtain two rigidity results for ‐Laplace type equation and ‐Laplace equation with exponential nonlinearity on ‐dimensional compact Riemannian manifolds by using of nonlinear flow and the carré du champ methods, respectively, where rigidity means that the PDE has only constant solution when a parameter is in a certain range. Moreover, an interpolation inequality is derived as an application.</description><subject>Interpolation</subject><subject>Laplace equation</subject><subject>Nonlinearity</subject><subject>Riemann manifold</subject><subject>Rigidity</subject><issn>0170-4214</issn><issn>1099-1476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNotkM1KAzEYRYMoWKvgIwTcuJmaL5PJJEsp_kFBKHUdMmmiKTOTaZJZdOcj-Iw-iVPq5p7N5V44CN0CWQAh9KHr9EJWXJyhGRApC2A1P0czAjUpGAV2ia5S2hFCBACdoc3af_qtzwccbRrbnLALEecviwf8-_2z0kOrjcX5MFhs96POPvQJhx6b0A3aZLz2ttN973WPJ3oX2m26RhdOt8ne_HOOPp6fNsvXYvX-8rZ8XBWGAs-FKBvgjshSC6fZVuhKcCoYVFI2U4JhlXMN50wQamVFGlmCK2vJBDd1RW05R3en3SGG_WhTVrswxn66VFQIySoKtZxa96eWiSGlaJ0aou90PCgg6uhMTc7U0Vn5Bw81XsU</recordid><startdate>20231130</startdate><enddate>20231130</enddate><creator>Wang, Yu‐Zhao</creator><creator>Wei, Pei‐Can</creator><creator>Zhang, Huiting</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><orcidid>https://orcid.org/0000-0003-0815-4664</orcidid></search><sort><creationdate>20231130</creationdate><title>Rigidity results for the p ‐Laplace type equations on compact Riemannian manifolds</title><author>Wang, Yu‐Zhao ; Wei, Pei‐Can ; Zhang, Huiting</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c216t-83b16f093a8fa4d8a5862841599b4151c45ffb664802e950b931f379486c752e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Interpolation</topic><topic>Laplace equation</topic><topic>Nonlinearity</topic><topic>Riemann manifold</topic><topic>Rigidity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Yu‐Zhao</creatorcontrib><creatorcontrib>Wei, Pei‐Can</creatorcontrib><creatorcontrib>Zhang, Huiting</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><jtitle>Mathematical methods in the applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Yu‐Zhao</au><au>Wei, Pei‐Can</au><au>Zhang, Huiting</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rigidity results for the p ‐Laplace type equations on compact Riemannian manifolds</atitle><jtitle>Mathematical methods in the applied sciences</jtitle><date>2023-11-30</date><risdate>2023</risdate><volume>46</volume><issue>17</issue><spage>18420</spage><epage>18432</epage><pages>18420-18432</pages><issn>0170-4214</issn><eissn>1099-1476</eissn><abstract>In this paper, we obtain two rigidity results for ‐Laplace type equation and ‐Laplace equation with exponential nonlinearity on ‐dimensional compact Riemannian manifolds by using of nonlinear flow and the carré du champ methods, respectively, where rigidity means that the PDE has only constant solution when a parameter is in a certain range. Moreover, an interpolation inequality is derived as an application.</abstract><cop>Freiburg</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/mma.9568</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-0815-4664</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0170-4214
ispartof Mathematical methods in the applied sciences, 2023-11, Vol.46 (17), p.18420-18432
issn 0170-4214
1099-1476
language eng
recordid cdi_proquest_journals_2889452179
source Wiley-Blackwell Read & Publish Collection
subjects Interpolation
Laplace equation
Nonlinearity
Riemann manifold
Rigidity
title Rigidity results for the p ‐Laplace type equations on compact Riemannian manifolds
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T10%3A07%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rigidity%20results%20for%20the%20p%20%E2%80%90Laplace%20type%20equations%20on%20compact%20Riemannian%20manifolds&rft.jtitle=Mathematical%20methods%20in%20the%20applied%20sciences&rft.au=Wang,%20Yu%E2%80%90Zhao&rft.date=2023-11-30&rft.volume=46&rft.issue=17&rft.spage=18420&rft.epage=18432&rft.pages=18420-18432&rft.issn=0170-4214&rft.eissn=1099-1476&rft_id=info:doi/10.1002/mma.9568&rft_dat=%3Cproquest_cross%3E2889452179%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c216t-83b16f093a8fa4d8a5862841599b4151c45ffb664802e950b931f379486c752e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2889452179&rft_id=info:pmid/&rfr_iscdi=true