Loading…

YOLOv5s-BC: An improved YOLOv5s-based method for real-time apple detection

To address the issues associated with the existing algorithms for the current apple detection, this study proposes an improved YOLOv5s-based method, named YOLOv5s-BC, for real-time apple detection, in which a series of modifications have been introduced. Firstly, a coordinate attention (CA) block ha...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2023-11
Main Authors: Liu, Jingfan, Liu, Zhaobing
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Liu, Jingfan
Liu, Zhaobing
description To address the issues associated with the existing algorithms for the current apple detection, this study proposes an improved YOLOv5s-based method, named YOLOv5s-BC, for real-time apple detection, in which a series of modifications have been introduced. Firstly, a coordinate attention (CA) block has been incorporated into the backbone module to construct a new backbone network. Secondly, the original concatenation operation has been replaced with a bidirectional feature pyramid network (BiFPN) in the neck module. Lastly, a new detection head has been added to the head module, enabling the detection of smaller and more distant targets within the field of view of the robot. The proposed YOLOv5s-BC model was compared to several target detection algorithms, including YOLOv5s, YOLOv4, YOLOv3, SSD, Faster R-CNN (ResNet50), and Faster R-CNN (VGG), with significant improvements of 4.6%, 3.6%, 20.48%, 23.22%, 15.27%, and 15.59% in mAP, respectively. The detection accuracy of the proposed model is also greatly enhanced over the original YOLOv5s model. The model boasts an average detection speed of 0.018 seconds per image, and the weight size is only 16.7 Mb with 4.7 Mb smaller than that of YOLOv8s, meeting the real-time requirements for the picking robot. Furthermore, according to the heat map, our proposed model can focus more on and learn the high-level features of the target apples, and recognize the smaller target apples better than the original YOLOv5s model. Then, in other apple orchard tests, the model can detect the pickable apples in real time and correctly, illustrating a decent generalization ability.
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2889481127</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2889481127</sourcerecordid><originalsourceid>FETCH-proquest_journals_28894811273</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mTwivT38S8zLdZ1crZScMxTyMwtKMovS01RgIknJRYDebmpJRn5KQpp-UUKRamJObolmbmpCokFBTmpCimpJanJJZn5eTwMrGmJOcWpvFCam0HZzTXE2UMXaGJhaWpxSXxWfmlRHlAq3sjCwtLEwtDQyNyYOFUA0_Y7Ow</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2889481127</pqid></control><display><type>article</type><title>YOLOv5s-BC: An improved YOLOv5s-based method for real-time apple detection</title><source>Publicly Available Content Database</source><creator>Liu, Jingfan ; Liu, Zhaobing</creator><creatorcontrib>Liu, Jingfan ; Liu, Zhaobing</creatorcontrib><description>To address the issues associated with the existing algorithms for the current apple detection, this study proposes an improved YOLOv5s-based method, named YOLOv5s-BC, for real-time apple detection, in which a series of modifications have been introduced. Firstly, a coordinate attention (CA) block has been incorporated into the backbone module to construct a new backbone network. Secondly, the original concatenation operation has been replaced with a bidirectional feature pyramid network (BiFPN) in the neck module. Lastly, a new detection head has been added to the head module, enabling the detection of smaller and more distant targets within the field of view of the robot. The proposed YOLOv5s-BC model was compared to several target detection algorithms, including YOLOv5s, YOLOv4, YOLOv3, SSD, Faster R-CNN (ResNet50), and Faster R-CNN (VGG), with significant improvements of 4.6%, 3.6%, 20.48%, 23.22%, 15.27%, and 15.59% in mAP, respectively. The detection accuracy of the proposed model is also greatly enhanced over the original YOLOv5s model. The model boasts an average detection speed of 0.018 seconds per image, and the weight size is only 16.7 Mb with 4.7 Mb smaller than that of YOLOv8s, meeting the real-time requirements for the picking robot. Furthermore, according to the heat map, our proposed model can focus more on and learn the high-level features of the target apples, and recognize the smaller target apples better than the original YOLOv5s model. Then, in other apple orchard tests, the model can detect the pickable apples in real time and correctly, illustrating a decent generalization ability.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Apples ; Computer networks ; Modules ; Object recognition ; Orchards ; Real time ; Robots ; Target detection</subject><ispartof>arXiv.org, 2023-11</ispartof><rights>2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2889481127?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,37012,44590</link.rule.ids></links><search><creatorcontrib>Liu, Jingfan</creatorcontrib><creatorcontrib>Liu, Zhaobing</creatorcontrib><title>YOLOv5s-BC: An improved YOLOv5s-based method for real-time apple detection</title><title>arXiv.org</title><description>To address the issues associated with the existing algorithms for the current apple detection, this study proposes an improved YOLOv5s-based method, named YOLOv5s-BC, for real-time apple detection, in which a series of modifications have been introduced. Firstly, a coordinate attention (CA) block has been incorporated into the backbone module to construct a new backbone network. Secondly, the original concatenation operation has been replaced with a bidirectional feature pyramid network (BiFPN) in the neck module. Lastly, a new detection head has been added to the head module, enabling the detection of smaller and more distant targets within the field of view of the robot. The proposed YOLOv5s-BC model was compared to several target detection algorithms, including YOLOv5s, YOLOv4, YOLOv3, SSD, Faster R-CNN (ResNet50), and Faster R-CNN (VGG), with significant improvements of 4.6%, 3.6%, 20.48%, 23.22%, 15.27%, and 15.59% in mAP, respectively. The detection accuracy of the proposed model is also greatly enhanced over the original YOLOv5s model. The model boasts an average detection speed of 0.018 seconds per image, and the weight size is only 16.7 Mb with 4.7 Mb smaller than that of YOLOv8s, meeting the real-time requirements for the picking robot. Furthermore, according to the heat map, our proposed model can focus more on and learn the high-level features of the target apples, and recognize the smaller target apples better than the original YOLOv5s model. Then, in other apple orchard tests, the model can detect the pickable apples in real time and correctly, illustrating a decent generalization ability.</description><subject>Algorithms</subject><subject>Apples</subject><subject>Computer networks</subject><subject>Modules</subject><subject>Object recognition</subject><subject>Orchards</subject><subject>Real time</subject><subject>Robots</subject><subject>Target detection</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mTwivT38S8zLdZ1crZScMxTyMwtKMovS01RgIknJRYDebmpJRn5KQpp-UUKRamJObolmbmpCokFBTmpCimpJanJJZn5eTwMrGmJOcWpvFCam0HZzTXE2UMXaGJhaWpxSXxWfmlRHlAq3sjCwtLEwtDQyNyYOFUA0_Y7Ow</recordid><startdate>20231110</startdate><enddate>20231110</enddate><creator>Liu, Jingfan</creator><creator>Liu, Zhaobing</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20231110</creationdate><title>YOLOv5s-BC: An improved YOLOv5s-based method for real-time apple detection</title><author>Liu, Jingfan ; Liu, Zhaobing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_28894811273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Apples</topic><topic>Computer networks</topic><topic>Modules</topic><topic>Object recognition</topic><topic>Orchards</topic><topic>Real time</topic><topic>Robots</topic><topic>Target detection</topic><toplevel>online_resources</toplevel><creatorcontrib>Liu, Jingfan</creatorcontrib><creatorcontrib>Liu, Zhaobing</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Jingfan</au><au>Liu, Zhaobing</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>YOLOv5s-BC: An improved YOLOv5s-based method for real-time apple detection</atitle><jtitle>arXiv.org</jtitle><date>2023-11-10</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>To address the issues associated with the existing algorithms for the current apple detection, this study proposes an improved YOLOv5s-based method, named YOLOv5s-BC, for real-time apple detection, in which a series of modifications have been introduced. Firstly, a coordinate attention (CA) block has been incorporated into the backbone module to construct a new backbone network. Secondly, the original concatenation operation has been replaced with a bidirectional feature pyramid network (BiFPN) in the neck module. Lastly, a new detection head has been added to the head module, enabling the detection of smaller and more distant targets within the field of view of the robot. The proposed YOLOv5s-BC model was compared to several target detection algorithms, including YOLOv5s, YOLOv4, YOLOv3, SSD, Faster R-CNN (ResNet50), and Faster R-CNN (VGG), with significant improvements of 4.6%, 3.6%, 20.48%, 23.22%, 15.27%, and 15.59% in mAP, respectively. The detection accuracy of the proposed model is also greatly enhanced over the original YOLOv5s model. The model boasts an average detection speed of 0.018 seconds per image, and the weight size is only 16.7 Mb with 4.7 Mb smaller than that of YOLOv8s, meeting the real-time requirements for the picking robot. Furthermore, according to the heat map, our proposed model can focus more on and learn the high-level features of the target apples, and recognize the smaller target apples better than the original YOLOv5s model. Then, in other apple orchard tests, the model can detect the pickable apples in real time and correctly, illustrating a decent generalization ability.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2023-11
issn 2331-8422
language eng
recordid cdi_proquest_journals_2889481127
source Publicly Available Content Database
subjects Algorithms
Apples
Computer networks
Modules
Object recognition
Orchards
Real time
Robots
Target detection
title YOLOv5s-BC: An improved YOLOv5s-based method for real-time apple detection
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T15%3A29%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=YOLOv5s-BC:%20An%20improved%20YOLOv5s-based%20method%20for%20real-time%20apple%20detection&rft.jtitle=arXiv.org&rft.au=Liu,%20Jingfan&rft.date=2023-11-10&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2889481127%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_28894811273%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2889481127&rft_id=info:pmid/&rfr_iscdi=true