Loading…
Arithmetic properties of colored p-ary partitions
We study divisibility properties of p-ary partitions colored with k(p − 1) colors for some positive integer k. In particular, we obtain a precise description of p-adic valuations in the case of k = p α and k = p α - 1 . We also prove a general result concerning the case in which finitely many parts...
Saved in:
Published in: | Acta mathematica Hungarica 2023-11, Vol.171 (1), p.53-66 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c270t-5dbc52b5cc7a40038bf2a26385854fcfc4cbd9285dc3f8453e862221c655c63d3 |
container_end_page | 66 |
container_issue | 1 |
container_start_page | 53 |
container_title | Acta mathematica Hungarica |
container_volume | 171 |
creator | Żmija, B. |
description | We study divisibility properties of p-ary partitions colored with k(p − 1) colors for some positive integer k. In particular, we obtain a precise description of p-adic valuations in the case of
k
=
p
α
and
k
=
p
α
-
1
.
We also prove a general result concerning the case in which finitely many parts can be colored with a number of colors smaller than k(p − 1) and all others with exactly k(p − 1) colors, where k is arbitrary (but fixed). |
doi_str_mv | 10.1007/s10474-023-01382-y |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2889631764</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2889631764</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-5dbc52b5cc7a40038bf2a26385854fcfc4cbd9285dc3f8453e862221c655c63d3</originalsourceid><addsrcrecordid>eNp9kLtOwzAUhi0EEqXwAkyRmA3Hx5e4Y1VxkyqxwGwlJzakautgp0PfHkOQ2JjO8F_Or4-xawG3AqC-ywJUrTig5CCkRX48YTOhreVoJJ6yWVEM17hQ5-wi5w0AaAlqxsQy9ePHzo89VUOKg09j73MVQ0VxG5PvqoE36VgNTRHGPu7zJTsLzTb7q987Z28P96-rJ75-eXxeLdecsIaR664lja0mqhsFIG0bsCljrLZaBQqkqO0WaHVHMlilpbcGEQUZrcnITs7ZzdRbZn0efB7dJh7Svrx0aO3CSFEbVVw4uSjFnJMPbkj9rix2Atw3GjehcQWA-0HjjiUkp1Au5v27T3_V_6S-ADH2Zns</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2889631764</pqid></control><display><type>article</type><title>Arithmetic properties of colored p-ary partitions</title><source>Springer Nature</source><creator>Żmija, B.</creator><creatorcontrib>Żmija, B.</creatorcontrib><description>We study divisibility properties of p-ary partitions colored with k(p − 1) colors for some positive integer k. In particular, we obtain a precise description of p-adic valuations in the case of
k
=
p
α
and
k
=
p
α
-
1
.
We also prove a general result concerning the case in which finitely many parts can be colored with a number of colors smaller than k(p − 1) and all others with exactly k(p − 1) colors, where k is arbitrary (but fixed).</description><identifier>ISSN: 0236-5294</identifier><identifier>EISSN: 1588-2632</identifier><identifier>DOI: 10.1007/s10474-023-01382-y</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Mathematics ; Mathematics and Statistics</subject><ispartof>Acta mathematica Hungarica, 2023-11, Vol.171 (1), p.53-66</ispartof><rights>Akadémiai Kiadó, Budapest, Hungary 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-5dbc52b5cc7a40038bf2a26385854fcfc4cbd9285dc3f8453e862221c655c63d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27900,27901</link.rule.ids></links><search><creatorcontrib>Żmija, B.</creatorcontrib><title>Arithmetic properties of colored p-ary partitions</title><title>Acta mathematica Hungarica</title><addtitle>Acta Math. Hungar</addtitle><description>We study divisibility properties of p-ary partitions colored with k(p − 1) colors for some positive integer k. In particular, we obtain a precise description of p-adic valuations in the case of
k
=
p
α
and
k
=
p
α
-
1
.
We also prove a general result concerning the case in which finitely many parts can be colored with a number of colors smaller than k(p − 1) and all others with exactly k(p − 1) colors, where k is arbitrary (but fixed).</description><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><issn>0236-5294</issn><issn>1588-2632</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kLtOwzAUhi0EEqXwAkyRmA3Hx5e4Y1VxkyqxwGwlJzakautgp0PfHkOQ2JjO8F_Or4-xawG3AqC-ywJUrTig5CCkRX48YTOhreVoJJ6yWVEM17hQ5-wi5w0AaAlqxsQy9ePHzo89VUOKg09j73MVQ0VxG5PvqoE36VgNTRHGPu7zJTsLzTb7q987Z28P96-rJ75-eXxeLdecsIaR664lja0mqhsFIG0bsCljrLZaBQqkqO0WaHVHMlilpbcGEQUZrcnITs7ZzdRbZn0efB7dJh7Svrx0aO3CSFEbVVw4uSjFnJMPbkj9rix2Atw3GjehcQWA-0HjjiUkp1Au5v27T3_V_6S-ADH2Zns</recordid><startdate>20231101</startdate><enddate>20231101</enddate><creator>Żmija, B.</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20231101</creationdate><title>Arithmetic properties of colored p-ary partitions</title><author>Żmija, B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-5dbc52b5cc7a40038bf2a26385854fcfc4cbd9285dc3f8453e862221c655c63d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Żmija, B.</creatorcontrib><collection>CrossRef</collection><jtitle>Acta mathematica Hungarica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Żmija, B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Arithmetic properties of colored p-ary partitions</atitle><jtitle>Acta mathematica Hungarica</jtitle><stitle>Acta Math. Hungar</stitle><date>2023-11-01</date><risdate>2023</risdate><volume>171</volume><issue>1</issue><spage>53</spage><epage>66</epage><pages>53-66</pages><issn>0236-5294</issn><eissn>1588-2632</eissn><abstract>We study divisibility properties of p-ary partitions colored with k(p − 1) colors for some positive integer k. In particular, we obtain a precise description of p-adic valuations in the case of
k
=
p
α
and
k
=
p
α
-
1
.
We also prove a general result concerning the case in which finitely many parts can be colored with a number of colors smaller than k(p − 1) and all others with exactly k(p − 1) colors, where k is arbitrary (but fixed).</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s10474-023-01382-y</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0236-5294 |
ispartof | Acta mathematica Hungarica, 2023-11, Vol.171 (1), p.53-66 |
issn | 0236-5294 1588-2632 |
language | eng |
recordid | cdi_proquest_journals_2889631764 |
source | Springer Nature |
subjects | Mathematics Mathematics and Statistics |
title | Arithmetic properties of colored p-ary partitions |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-24T14%3A13%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Arithmetic%20properties%20of%20colored%20p-ary%20partitions&rft.jtitle=Acta%20mathematica%20Hungarica&rft.au=%C5%BBmija,%20B.&rft.date=2023-11-01&rft.volume=171&rft.issue=1&rft.spage=53&rft.epage=66&rft.pages=53-66&rft.issn=0236-5294&rft.eissn=1588-2632&rft_id=info:doi/10.1007/s10474-023-01382-y&rft_dat=%3Cproquest_cross%3E2889631764%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c270t-5dbc52b5cc7a40038bf2a26385854fcfc4cbd9285dc3f8453e862221c655c63d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2889631764&rft_id=info:pmid/&rfr_iscdi=true |