Loading…

Holistic Implicit Factor Evaluation of Model Extraction Attacks

Model extraction attacks (MEAs) allow adversaries to replicate a surrogate model analogous to the target model's decision pattern. While several attacks and defenses have been studied in-depth, the underlying reasons behind our susceptibility to them often remain unclear. Analyzing these implic...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on dependable and secure computing 2023-11, Vol.20 (6), p.1-12
Main Authors: Yan, Anli, Yan, Hongyang, Hu, Li, Liu, Xiaozhang, Huang, Teng
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c293t-a6e2536d21b6e444bd4fa11d4ef47fe91d31c197e41e2011257cbcb63dd7e83d3
cites cdi_FETCH-LOGICAL-c293t-a6e2536d21b6e444bd4fa11d4ef47fe91d31c197e41e2011257cbcb63dd7e83d3
container_end_page 12
container_issue 6
container_start_page 1
container_title IEEE transactions on dependable and secure computing
container_volume 20
creator Yan, Anli
Yan, Hongyang
Hu, Li
Liu, Xiaozhang
Huang, Teng
description Model extraction attacks (MEAs) allow adversaries to replicate a surrogate model analogous to the target model's decision pattern. While several attacks and defenses have been studied in-depth, the underlying reasons behind our susceptibility to them often remain unclear. Analyzing these implication influence factors helps to promote secure deep learning (DL) systems, it requires studying extraction attacks in various scenarios to determine the success of different attacks and the hallmarks of DLs. However, understanding, implementing, and evaluating even a single attack requires extremely high technical effort, making it impractical to study the vast number of unique extraction attack scenarios. To this end, we present a first-of-its-kind holistic evaluation of implication factors for MEAs which relies on the attack process abstracted from state-of-the-art MEAs. Specifically, we concentrate on four perspectives. we consider the impact of the task accuracy, model architecture, and robustness of the target model on MEAs, as well as the impact of the model architecture of the surrogate model on MEAs. Our empirical evaluation includes an ablation study over sixteen model architectures and four image datasets. Surprisingly, our study shows that improving the robustness of the target model via adversarial training is more vulnerable to model extraction attacks.
doi_str_mv 10.1109/TDSC.2022.3231271
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_2889731343</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9999271</ieee_id><sourcerecordid>2889731343</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-a6e2536d21b6e444bd4fa11d4ef47fe91d31c197e41e2011257cbcb63dd7e83d3</originalsourceid><addsrcrecordid>eNo9kE9LAzEQxYMoWKsfQLwseN6aSbJ_cpJSWy1UPFjPIZvMQuq2qUkq-u3dpcW5zDDvvRn4EXILdAJA5cP66X02YZSxCWccWAVnZARSQE4p1Of9XIgiL2QFl-Qqxg2lTNRSjMjji-9cTM5ky-2-c8albKFN8iGbf-vuoJPzu8y32au32GXznxR6ddhNU9LmM16Ti1Z3EW9OfUw-FvP17CVfvT0vZ9NVbpjkKdclsoKXlkFTohCisaLVAFZgK6oWJVgOBmSFApBRAFZUpjFNya2tsOaWj8n98e4--K8DxqQ2_hB2_UvF6lpWHLjgvQuOLhN8jAFbtQ9uq8OvAqoGTmrgpAZO6sSpz9wdMw4R__2yr0H9AwXmY0w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2889731343</pqid></control><display><type>article</type><title>Holistic Implicit Factor Evaluation of Model Extraction Attacks</title><source>IEEE Xplore (Online service)</source><creator>Yan, Anli ; Yan, Hongyang ; Hu, Li ; Liu, Xiaozhang ; Huang, Teng</creator><creatorcontrib>Yan, Anli ; Yan, Hongyang ; Hu, Li ; Liu, Xiaozhang ; Huang, Teng</creatorcontrib><description>Model extraction attacks (MEAs) allow adversaries to replicate a surrogate model analogous to the target model's decision pattern. While several attacks and defenses have been studied in-depth, the underlying reasons behind our susceptibility to them often remain unclear. Analyzing these implication influence factors helps to promote secure deep learning (DL) systems, it requires studying extraction attacks in various scenarios to determine the success of different attacks and the hallmarks of DLs. However, understanding, implementing, and evaluating even a single attack requires extremely high technical effort, making it impractical to study the vast number of unique extraction attack scenarios. To this end, we present a first-of-its-kind holistic evaluation of implication factors for MEAs which relies on the attack process abstracted from state-of-the-art MEAs. Specifically, we concentrate on four perspectives. we consider the impact of the task accuracy, model architecture, and robustness of the target model on MEAs, as well as the impact of the model architecture of the surrogate model on MEAs. Our empirical evaluation includes an ablation study over sixteen model architectures and four image datasets. Surprisingly, our study shows that improving the robustness of the target model via adversarial training is more vulnerable to model extraction attacks.</description><identifier>ISSN: 1545-5971</identifier><identifier>EISSN: 1941-0018</identifier><identifier>DOI: 10.1109/TDSC.2022.3231271</identifier><identifier>CODEN: ITDSCM</identifier><language>eng</language><publisher>Washington: IEEE</publisher><subject>Ablation ; Analytical models ; Computational modeling ; Computer architecture ; Empirical analysis ; Evaluation ; implicit factors ; Mathematical models ; Model accuracy ; model extraction attacks ; Predictive models ; Robustness ; Task analysis ; Training</subject><ispartof>IEEE transactions on dependable and secure computing, 2023-11, Vol.20 (6), p.1-12</ispartof><rights>Copyright IEEE Computer Society 2023</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-a6e2536d21b6e444bd4fa11d4ef47fe91d31c197e41e2011257cbcb63dd7e83d3</citedby><cites>FETCH-LOGICAL-c293t-a6e2536d21b6e444bd4fa11d4ef47fe91d31c197e41e2011257cbcb63dd7e83d3</cites><orcidid>0000-0002-7372-7345 ; 0000-0001-9858-0063 ; 0000-0002-2854-2931 ; 0000-0003-1453-0996 ; 0000-0001-7261-6398 ; 0000-0002-1493-9671</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9999271$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Yan, Anli</creatorcontrib><creatorcontrib>Yan, Hongyang</creatorcontrib><creatorcontrib>Hu, Li</creatorcontrib><creatorcontrib>Liu, Xiaozhang</creatorcontrib><creatorcontrib>Huang, Teng</creatorcontrib><title>Holistic Implicit Factor Evaluation of Model Extraction Attacks</title><title>IEEE transactions on dependable and secure computing</title><addtitle>TDSC</addtitle><description>Model extraction attacks (MEAs) allow adversaries to replicate a surrogate model analogous to the target model's decision pattern. While several attacks and defenses have been studied in-depth, the underlying reasons behind our susceptibility to them often remain unclear. Analyzing these implication influence factors helps to promote secure deep learning (DL) systems, it requires studying extraction attacks in various scenarios to determine the success of different attacks and the hallmarks of DLs. However, understanding, implementing, and evaluating even a single attack requires extremely high technical effort, making it impractical to study the vast number of unique extraction attack scenarios. To this end, we present a first-of-its-kind holistic evaluation of implication factors for MEAs which relies on the attack process abstracted from state-of-the-art MEAs. Specifically, we concentrate on four perspectives. we consider the impact of the task accuracy, model architecture, and robustness of the target model on MEAs, as well as the impact of the model architecture of the surrogate model on MEAs. Our empirical evaluation includes an ablation study over sixteen model architectures and four image datasets. Surprisingly, our study shows that improving the robustness of the target model via adversarial training is more vulnerable to model extraction attacks.</description><subject>Ablation</subject><subject>Analytical models</subject><subject>Computational modeling</subject><subject>Computer architecture</subject><subject>Empirical analysis</subject><subject>Evaluation</subject><subject>implicit factors</subject><subject>Mathematical models</subject><subject>Model accuracy</subject><subject>model extraction attacks</subject><subject>Predictive models</subject><subject>Robustness</subject><subject>Task analysis</subject><subject>Training</subject><issn>1545-5971</issn><issn>1941-0018</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNo9kE9LAzEQxYMoWKsfQLwseN6aSbJ_cpJSWy1UPFjPIZvMQuq2qUkq-u3dpcW5zDDvvRn4EXILdAJA5cP66X02YZSxCWccWAVnZARSQE4p1Of9XIgiL2QFl-Qqxg2lTNRSjMjji-9cTM5ky-2-c8albKFN8iGbf-vuoJPzu8y32au32GXznxR6ddhNU9LmM16Ti1Z3EW9OfUw-FvP17CVfvT0vZ9NVbpjkKdclsoKXlkFTohCisaLVAFZgK6oWJVgOBmSFApBRAFZUpjFNya2tsOaWj8n98e4--K8DxqQ2_hB2_UvF6lpWHLjgvQuOLhN8jAFbtQ9uq8OvAqoGTmrgpAZO6sSpz9wdMw4R__2yr0H9AwXmY0w</recordid><startdate>20231101</startdate><enddate>20231101</enddate><creator>Yan, Anli</creator><creator>Yan, Hongyang</creator><creator>Hu, Li</creator><creator>Liu, Xiaozhang</creator><creator>Huang, Teng</creator><general>IEEE</general><general>IEEE Computer Society</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><orcidid>https://orcid.org/0000-0002-7372-7345</orcidid><orcidid>https://orcid.org/0000-0001-9858-0063</orcidid><orcidid>https://orcid.org/0000-0002-2854-2931</orcidid><orcidid>https://orcid.org/0000-0003-1453-0996</orcidid><orcidid>https://orcid.org/0000-0001-7261-6398</orcidid><orcidid>https://orcid.org/0000-0002-1493-9671</orcidid></search><sort><creationdate>20231101</creationdate><title>Holistic Implicit Factor Evaluation of Model Extraction Attacks</title><author>Yan, Anli ; Yan, Hongyang ; Hu, Li ; Liu, Xiaozhang ; Huang, Teng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-a6e2536d21b6e444bd4fa11d4ef47fe91d31c197e41e2011257cbcb63dd7e83d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Ablation</topic><topic>Analytical models</topic><topic>Computational modeling</topic><topic>Computer architecture</topic><topic>Empirical analysis</topic><topic>Evaluation</topic><topic>implicit factors</topic><topic>Mathematical models</topic><topic>Model accuracy</topic><topic>model extraction attacks</topic><topic>Predictive models</topic><topic>Robustness</topic><topic>Task analysis</topic><topic>Training</topic><toplevel>online_resources</toplevel><creatorcontrib>Yan, Anli</creatorcontrib><creatorcontrib>Yan, Hongyang</creatorcontrib><creatorcontrib>Hu, Li</creatorcontrib><creatorcontrib>Liu, Xiaozhang</creatorcontrib><creatorcontrib>Huang, Teng</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore (Online service)</collection><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>IEEE transactions on dependable and secure computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yan, Anli</au><au>Yan, Hongyang</au><au>Hu, Li</au><au>Liu, Xiaozhang</au><au>Huang, Teng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Holistic Implicit Factor Evaluation of Model Extraction Attacks</atitle><jtitle>IEEE transactions on dependable and secure computing</jtitle><stitle>TDSC</stitle><date>2023-11-01</date><risdate>2023</risdate><volume>20</volume><issue>6</issue><spage>1</spage><epage>12</epage><pages>1-12</pages><issn>1545-5971</issn><eissn>1941-0018</eissn><coden>ITDSCM</coden><abstract>Model extraction attacks (MEAs) allow adversaries to replicate a surrogate model analogous to the target model's decision pattern. While several attacks and defenses have been studied in-depth, the underlying reasons behind our susceptibility to them often remain unclear. Analyzing these implication influence factors helps to promote secure deep learning (DL) systems, it requires studying extraction attacks in various scenarios to determine the success of different attacks and the hallmarks of DLs. However, understanding, implementing, and evaluating even a single attack requires extremely high technical effort, making it impractical to study the vast number of unique extraction attack scenarios. To this end, we present a first-of-its-kind holistic evaluation of implication factors for MEAs which relies on the attack process abstracted from state-of-the-art MEAs. Specifically, we concentrate on four perspectives. we consider the impact of the task accuracy, model architecture, and robustness of the target model on MEAs, as well as the impact of the model architecture of the surrogate model on MEAs. Our empirical evaluation includes an ablation study over sixteen model architectures and four image datasets. Surprisingly, our study shows that improving the robustness of the target model via adversarial training is more vulnerable to model extraction attacks.</abstract><cop>Washington</cop><pub>IEEE</pub><doi>10.1109/TDSC.2022.3231271</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-7372-7345</orcidid><orcidid>https://orcid.org/0000-0001-9858-0063</orcidid><orcidid>https://orcid.org/0000-0002-2854-2931</orcidid><orcidid>https://orcid.org/0000-0003-1453-0996</orcidid><orcidid>https://orcid.org/0000-0001-7261-6398</orcidid><orcidid>https://orcid.org/0000-0002-1493-9671</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1545-5971
ispartof IEEE transactions on dependable and secure computing, 2023-11, Vol.20 (6), p.1-12
issn 1545-5971
1941-0018
language eng
recordid cdi_proquest_journals_2889731343
source IEEE Xplore (Online service)
subjects Ablation
Analytical models
Computational modeling
Computer architecture
Empirical analysis
Evaluation
implicit factors
Mathematical models
Model accuracy
model extraction attacks
Predictive models
Robustness
Task analysis
Training
title Holistic Implicit Factor Evaluation of Model Extraction Attacks
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T12%3A12%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Holistic%20Implicit%20Factor%20Evaluation%20of%20Model%20Extraction%20Attacks&rft.jtitle=IEEE%20transactions%20on%20dependable%20and%20secure%20computing&rft.au=Yan,%20Anli&rft.date=2023-11-01&rft.volume=20&rft.issue=6&rft.spage=1&rft.epage=12&rft.pages=1-12&rft.issn=1545-5971&rft.eissn=1941-0018&rft.coden=ITDSCM&rft_id=info:doi/10.1109/TDSC.2022.3231271&rft_dat=%3Cproquest_ieee_%3E2889731343%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c293t-a6e2536d21b6e444bd4fa11d4ef47fe91d31c197e41e2011257cbcb63dd7e83d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2889731343&rft_id=info:pmid/&rft_ieee_id=9999271&rfr_iscdi=true