Loading…
A flexible two-piece normal dynamic linear model
We construct a flexible dynamic linear model for the analysis and prediction of multivariate time series, assuming a two-piece normal initial distribution for the state vector. We derive a novel Kalman filter for this model, obtaining a two components mixture as predictive and filtering distribution...
Saved in:
Published in: | Computational statistics 2023-12, Vol.38 (4), p.2075-2096 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We construct a flexible dynamic linear model for the analysis and prediction of multivariate time series, assuming a two-piece normal initial distribution for the state vector. We derive a novel Kalman filter for this model, obtaining a two components mixture as predictive and filtering distributions. In order to estimate the covariance of the error sequences, we develop a Gibbs-sampling algorithm to perform Bayesian inference. The proposed approach is validated and compared with a Gaussian dynamic linear model in simulations and on a real data set. |
---|---|
ISSN: | 0943-4062 1613-9658 |
DOI: | 10.1007/s00180-023-01355-3 |