Loading…
Leveraging Multiple Teachers for Test-Time Adaptation of Language-Guided Classifiers
Recent approaches have explored language-guided classifiers capable of classifying examples from novel tasks when provided with task-specific natural language explanations, instructions or prompts (Sanh et al., 2022; R. Menon et al., 2022). While these classifiers can generalize in zero-shot setting...
Saved in:
Published in: | arXiv.org 2023-11 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Kangda Wei Ghosh, Sayan Menon, Rakesh R Srivastava, Shashank |
description | Recent approaches have explored language-guided classifiers capable of classifying examples from novel tasks when provided with task-specific natural language explanations, instructions or prompts (Sanh et al., 2022; R. Menon et al., 2022). While these classifiers can generalize in zero-shot settings, their task performance often varies substantially between different language explanations in unpredictable ways (Lu et al., 2022; Gonen et al., 2022). Also, current approaches fail to leverage unlabeled examples that may be available in many scenarios. Here, we introduce TALC, a framework that uses data programming to adapt a language-guided classifier for a new task during inference when provided with explanations from multiple teachers and unlabeled test examples. Our results show that TALC consistently outperforms a competitive baseline from prior work by an impressive 9.3% (relative improvement). Further, we demonstrate the robustness of TALC to variations in the quality and quantity of provided explanations, highlighting its potential in scenarios where learning from multiple teachers or a crowd is involved. Our code is available at: https://github.com/WeiKangda/TALC.git. |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2889792201</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2889792201</sourcerecordid><originalsourceid>FETCH-proquest_journals_28897922013</originalsourceid><addsrcrecordid>eNqNjMsKwjAURIMgWLT_EHBdSBNr26UUH4u6y74EexNTalLz8PvNwg9wNQxnzqxQRhkri-ZA6Qbl3k-EEHqsaVWxDPEePuCE0kbhe5yDXmbAHMTjCc5jaV0qPhRcvwCfRrEEEbQ12ErcC6OiUFBcox5hxN0svNdSJ2-H1lLMHvJfbtH-cubdrVicfcf0N0w2OpPQQJumrVtKScn-W30BZgZAUA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2889792201</pqid></control><display><type>article</type><title>Leveraging Multiple Teachers for Test-Time Adaptation of Language-Guided Classifiers</title><source>Publicly Available Content Database</source><creator>Kangda Wei ; Ghosh, Sayan ; Menon, Rakesh R ; Srivastava, Shashank</creator><creatorcontrib>Kangda Wei ; Ghosh, Sayan ; Menon, Rakesh R ; Srivastava, Shashank</creatorcontrib><description>Recent approaches have explored language-guided classifiers capable of classifying examples from novel tasks when provided with task-specific natural language explanations, instructions or prompts (Sanh et al., 2022; R. Menon et al., 2022). While these classifiers can generalize in zero-shot settings, their task performance often varies substantially between different language explanations in unpredictable ways (Lu et al., 2022; Gonen et al., 2022). Also, current approaches fail to leverage unlabeled examples that may be available in many scenarios. Here, we introduce TALC, a framework that uses data programming to adapt a language-guided classifier for a new task during inference when provided with explanations from multiple teachers and unlabeled test examples. Our results show that TALC consistently outperforms a competitive baseline from prior work by an impressive 9.3% (relative improvement). Further, we demonstrate the robustness of TALC to variations in the quality and quantity of provided explanations, highlighting its potential in scenarios where learning from multiple teachers or a crowd is involved. Our code is available at: https://github.com/WeiKangda/TALC.git.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Classifiers ; Language ; Talc ; Teachers ; Testing time</subject><ispartof>arXiv.org, 2023-11</ispartof><rights>2023. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2889792201?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>778,782,25736,36995,44573</link.rule.ids></links><search><creatorcontrib>Kangda Wei</creatorcontrib><creatorcontrib>Ghosh, Sayan</creatorcontrib><creatorcontrib>Menon, Rakesh R</creatorcontrib><creatorcontrib>Srivastava, Shashank</creatorcontrib><title>Leveraging Multiple Teachers for Test-Time Adaptation of Language-Guided Classifiers</title><title>arXiv.org</title><description>Recent approaches have explored language-guided classifiers capable of classifying examples from novel tasks when provided with task-specific natural language explanations, instructions or prompts (Sanh et al., 2022; R. Menon et al., 2022). While these classifiers can generalize in zero-shot settings, their task performance often varies substantially between different language explanations in unpredictable ways (Lu et al., 2022; Gonen et al., 2022). Also, current approaches fail to leverage unlabeled examples that may be available in many scenarios. Here, we introduce TALC, a framework that uses data programming to adapt a language-guided classifier for a new task during inference when provided with explanations from multiple teachers and unlabeled test examples. Our results show that TALC consistently outperforms a competitive baseline from prior work by an impressive 9.3% (relative improvement). Further, we demonstrate the robustness of TALC to variations in the quality and quantity of provided explanations, highlighting its potential in scenarios where learning from multiple teachers or a crowd is involved. Our code is available at: https://github.com/WeiKangda/TALC.git.</description><subject>Classifiers</subject><subject>Language</subject><subject>Talc</subject><subject>Teachers</subject><subject>Testing time</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNjMsKwjAURIMgWLT_EHBdSBNr26UUH4u6y74EexNTalLz8PvNwg9wNQxnzqxQRhkri-ZA6Qbl3k-EEHqsaVWxDPEePuCE0kbhe5yDXmbAHMTjCc5jaV0qPhRcvwCfRrEEEbQ12ErcC6OiUFBcox5hxN0svNdSJ2-H1lLMHvJfbtH-cubdrVicfcf0N0w2OpPQQJumrVtKScn-W30BZgZAUA</recordid><startdate>20231113</startdate><enddate>20231113</enddate><creator>Kangda Wei</creator><creator>Ghosh, Sayan</creator><creator>Menon, Rakesh R</creator><creator>Srivastava, Shashank</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20231113</creationdate><title>Leveraging Multiple Teachers for Test-Time Adaptation of Language-Guided Classifiers</title><author>Kangda Wei ; Ghosh, Sayan ; Menon, Rakesh R ; Srivastava, Shashank</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_28897922013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Classifiers</topic><topic>Language</topic><topic>Talc</topic><topic>Teachers</topic><topic>Testing time</topic><toplevel>online_resources</toplevel><creatorcontrib>Kangda Wei</creatorcontrib><creatorcontrib>Ghosh, Sayan</creatorcontrib><creatorcontrib>Menon, Rakesh R</creatorcontrib><creatorcontrib>Srivastava, Shashank</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kangda Wei</au><au>Ghosh, Sayan</au><au>Menon, Rakesh R</au><au>Srivastava, Shashank</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Leveraging Multiple Teachers for Test-Time Adaptation of Language-Guided Classifiers</atitle><jtitle>arXiv.org</jtitle><date>2023-11-13</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>Recent approaches have explored language-guided classifiers capable of classifying examples from novel tasks when provided with task-specific natural language explanations, instructions or prompts (Sanh et al., 2022; R. Menon et al., 2022). While these classifiers can generalize in zero-shot settings, their task performance often varies substantially between different language explanations in unpredictable ways (Lu et al., 2022; Gonen et al., 2022). Also, current approaches fail to leverage unlabeled examples that may be available in many scenarios. Here, we introduce TALC, a framework that uses data programming to adapt a language-guided classifier for a new task during inference when provided with explanations from multiple teachers and unlabeled test examples. Our results show that TALC consistently outperforms a competitive baseline from prior work by an impressive 9.3% (relative improvement). Further, we demonstrate the robustness of TALC to variations in the quality and quantity of provided explanations, highlighting its potential in scenarios where learning from multiple teachers or a crowd is involved. Our code is available at: https://github.com/WeiKangda/TALC.git.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2023-11 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2889792201 |
source | Publicly Available Content Database |
subjects | Classifiers Language Talc Teachers Testing time |
title | Leveraging Multiple Teachers for Test-Time Adaptation of Language-Guided Classifiers |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T22%3A39%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Leveraging%20Multiple%20Teachers%20for%20Test-Time%20Adaptation%20of%20Language-Guided%20Classifiers&rft.jtitle=arXiv.org&rft.au=Kangda%20Wei&rft.date=2023-11-13&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2889792201%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_28897922013%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2889792201&rft_id=info:pmid/&rfr_iscdi=true |