Loading…

Third order corrections to the ground state energy of a Bose gas in the Gross-Pitaevskii regime

For a translation invariant system of \(N\) bosons in the Gross-Pitaevskii regime, we establish a precise bound for the ground state energy \(E_N\). While the leading, order \(N\), contribution to \(E_N\) has been known since [30,28] and the second order corrections (of order one) have been first de...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2024-04
Main Authors: Caraci, Cristina, Olgiati, Alessandro, Diane Saint Aubin, Schlein, Benjamin
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Caraci, Cristina
Olgiati, Alessandro
Diane Saint Aubin
Schlein, Benjamin
description For a translation invariant system of \(N\) bosons in the Gross-Pitaevskii regime, we establish a precise bound for the ground state energy \(E_N\). While the leading, order \(N\), contribution to \(E_N\) has been known since [30,28] and the second order corrections (of order one) have been first determined in [5], our estimate also resolves the next term in the asymptotic expansion of \(E_N\), which is of the order \((\log N) / N\).
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2889797474</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2889797474</sourcerecordid><originalsourceid>FETCH-proquest_journals_28897974743</originalsourceid><addsrcrecordid>eNqNys8KgkAQgPElCIrqHQY6C7Zaa9eiP8cO3mXRUddqp2bWoLdPogfo9B1-30hNdZKsoizVeqIWIl0cx3pj9HqdTFWRt44rIK6QoSRmLIMjLxAIQovQMPW-Agk2IKBHbt5ANVjYkQxqBZz_jicmkejigsWXXJ0Dxsbdca7Gtb0JLn6dqeXxkO_P0YPp2aOEoqOe_UCFzrKt2ZrUpMl_1wdzKkRF</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2889797474</pqid></control><display><type>article</type><title>Third order corrections to the ground state energy of a Bose gas in the Gross-Pitaevskii regime</title><source>Publicly Available Content Database</source><creator>Caraci, Cristina ; Olgiati, Alessandro ; Diane Saint Aubin ; Schlein, Benjamin</creator><creatorcontrib>Caraci, Cristina ; Olgiati, Alessandro ; Diane Saint Aubin ; Schlein, Benjamin</creatorcontrib><description>For a translation invariant system of \(N\) bosons in the Gross-Pitaevskii regime, we establish a precise bound for the ground state energy \(E_N\). While the leading, order \(N\), contribution to \(E_N\) has been known since [30,28] and the second order corrections (of order one) have been first determined in [5], our estimate also resolves the next term in the asymptotic expansion of \(E_N\), which is of the order \((\log N) / N\).</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Asymptotic series ; Bosons ; Ground state</subject><ispartof>arXiv.org, 2024-04</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2889797474?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,37012,44590</link.rule.ids></links><search><creatorcontrib>Caraci, Cristina</creatorcontrib><creatorcontrib>Olgiati, Alessandro</creatorcontrib><creatorcontrib>Diane Saint Aubin</creatorcontrib><creatorcontrib>Schlein, Benjamin</creatorcontrib><title>Third order corrections to the ground state energy of a Bose gas in the Gross-Pitaevskii regime</title><title>arXiv.org</title><description>For a translation invariant system of \(N\) bosons in the Gross-Pitaevskii regime, we establish a precise bound for the ground state energy \(E_N\). While the leading, order \(N\), contribution to \(E_N\) has been known since [30,28] and the second order corrections (of order one) have been first determined in [5], our estimate also resolves the next term in the asymptotic expansion of \(E_N\), which is of the order \((\log N) / N\).</description><subject>Asymptotic series</subject><subject>Bosons</subject><subject>Ground state</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNys8KgkAQgPElCIrqHQY6C7Zaa9eiP8cO3mXRUddqp2bWoLdPogfo9B1-30hNdZKsoizVeqIWIl0cx3pj9HqdTFWRt44rIK6QoSRmLIMjLxAIQovQMPW-Agk2IKBHbt5ANVjYkQxqBZz_jicmkejigsWXXJ0Dxsbdca7Gtb0JLn6dqeXxkO_P0YPp2aOEoqOe_UCFzrKt2ZrUpMl_1wdzKkRF</recordid><startdate>20240417</startdate><enddate>20240417</enddate><creator>Caraci, Cristina</creator><creator>Olgiati, Alessandro</creator><creator>Diane Saint Aubin</creator><creator>Schlein, Benjamin</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240417</creationdate><title>Third order corrections to the ground state energy of a Bose gas in the Gross-Pitaevskii regime</title><author>Caraci, Cristina ; Olgiati, Alessandro ; Diane Saint Aubin ; Schlein, Benjamin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_28897974743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Asymptotic series</topic><topic>Bosons</topic><topic>Ground state</topic><toplevel>online_resources</toplevel><creatorcontrib>Caraci, Cristina</creatorcontrib><creatorcontrib>Olgiati, Alessandro</creatorcontrib><creatorcontrib>Diane Saint Aubin</creatorcontrib><creatorcontrib>Schlein, Benjamin</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Caraci, Cristina</au><au>Olgiati, Alessandro</au><au>Diane Saint Aubin</au><au>Schlein, Benjamin</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Third order corrections to the ground state energy of a Bose gas in the Gross-Pitaevskii regime</atitle><jtitle>arXiv.org</jtitle><date>2024-04-17</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>For a translation invariant system of \(N\) bosons in the Gross-Pitaevskii regime, we establish a precise bound for the ground state energy \(E_N\). While the leading, order \(N\), contribution to \(E_N\) has been known since [30,28] and the second order corrections (of order one) have been first determined in [5], our estimate also resolves the next term in the asymptotic expansion of \(E_N\), which is of the order \((\log N) / N\).</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-04
issn 2331-8422
language eng
recordid cdi_proquest_journals_2889797474
source Publicly Available Content Database
subjects Asymptotic series
Bosons
Ground state
title Third order corrections to the ground state energy of a Bose gas in the Gross-Pitaevskii regime
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T18%3A02%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Third%20order%20corrections%20to%20the%20ground%20state%20energy%20of%20a%20Bose%20gas%20in%20the%20Gross-Pitaevskii%20regime&rft.jtitle=arXiv.org&rft.au=Caraci,%20Cristina&rft.date=2024-04-17&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2889797474%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_28897974743%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2889797474&rft_id=info:pmid/&rfr_iscdi=true