Loading…
Probing omics data via harmonic persistent homology
Identifying molecular signatures from complex disease patients with underlying symptomatic similarities is a significant challenge in the analysis of high dimensional multi-omics data. Topological data analysis (TDA) provides a way of extracting such information from the geometric structure of the d...
Saved in:
Published in: | arXiv.org 2024-04 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Gurnari, Davide Guzmán-Sáenz, Aldo Utro, Filippo Bose, Aritra Basu, Saugata Parida, Laxmi |
description | Identifying molecular signatures from complex disease patients with underlying symptomatic similarities is a significant challenge in the analysis of high dimensional multi-omics data. Topological data analysis (TDA) provides a way of extracting such information from the geometric structure of the data and identifying multiway higher-order relationships. Here, we propose an application of Harmonic persistent homology, which overcomes the limitations of ambiguous assignment of the topological information to the original elements in a representative topological cycle from the data. When applied to multi-omics data, this leads to the discovery of hidden patterns highlighting the relationships between different omic profiles, while allowing for common tasks in multi-omics analyses, such as disease subtyping, and most importantly biomarker identification for similar latent biological pathways that are associated with complex diseases. Our experiments on multiple cancer data show that harmonic persistent homology effectively dissects multi-omics data to identify biomarkers by detecting representative cycles predictive of disease subtypes. |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2889797744</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2889797744</sourcerecordid><originalsourceid>FETCH-proquest_journals_28897977443</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mQwDijKT8rMS1fIz81MLlZISSxJVCjLTFTISCzKzc_LTFYoSC0qziwuSc0rUcjIz83PyU-v5GFgTUvMKU7lhdLcDMpuriHOHroFRfmFpanFJfFZ-aVFeUCpeCMLC0tzS3NzExNj4lQBAEVgNNA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2889797744</pqid></control><display><type>article</type><title>Probing omics data via harmonic persistent homology</title><source>ProQuest - Publicly Available Content Database</source><creator>Gurnari, Davide ; Guzmán-Sáenz, Aldo ; Utro, Filippo ; Bose, Aritra ; Basu, Saugata ; Parida, Laxmi</creator><creatorcontrib>Gurnari, Davide ; Guzmán-Sáenz, Aldo ; Utro, Filippo ; Bose, Aritra ; Basu, Saugata ; Parida, Laxmi</creatorcontrib><description>Identifying molecular signatures from complex disease patients with underlying symptomatic similarities is a significant challenge in the analysis of high dimensional multi-omics data. Topological data analysis (TDA) provides a way of extracting such information from the geometric structure of the data and identifying multiway higher-order relationships. Here, we propose an application of Harmonic persistent homology, which overcomes the limitations of ambiguous assignment of the topological information to the original elements in a representative topological cycle from the data. When applied to multi-omics data, this leads to the discovery of hidden patterns highlighting the relationships between different omic profiles, while allowing for common tasks in multi-omics analyses, such as disease subtyping, and most importantly biomarker identification for similar latent biological pathways that are associated with complex diseases. Our experiments on multiple cancer data show that harmonic persistent homology effectively dissects multi-omics data to identify biomarkers by detecting representative cycles predictive of disease subtypes.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Biomarkers ; Data analysis ; Dimensional analysis ; Disease ; Homology ; Topology</subject><ispartof>arXiv.org, 2024-04</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2889797744?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,37012,44590</link.rule.ids></links><search><creatorcontrib>Gurnari, Davide</creatorcontrib><creatorcontrib>Guzmán-Sáenz, Aldo</creatorcontrib><creatorcontrib>Utro, Filippo</creatorcontrib><creatorcontrib>Bose, Aritra</creatorcontrib><creatorcontrib>Basu, Saugata</creatorcontrib><creatorcontrib>Parida, Laxmi</creatorcontrib><title>Probing omics data via harmonic persistent homology</title><title>arXiv.org</title><description>Identifying molecular signatures from complex disease patients with underlying symptomatic similarities is a significant challenge in the analysis of high dimensional multi-omics data. Topological data analysis (TDA) provides a way of extracting such information from the geometric structure of the data and identifying multiway higher-order relationships. Here, we propose an application of Harmonic persistent homology, which overcomes the limitations of ambiguous assignment of the topological information to the original elements in a representative topological cycle from the data. When applied to multi-omics data, this leads to the discovery of hidden patterns highlighting the relationships between different omic profiles, while allowing for common tasks in multi-omics analyses, such as disease subtyping, and most importantly biomarker identification for similar latent biological pathways that are associated with complex diseases. Our experiments on multiple cancer data show that harmonic persistent homology effectively dissects multi-omics data to identify biomarkers by detecting representative cycles predictive of disease subtypes.</description><subject>Biomarkers</subject><subject>Data analysis</subject><subject>Dimensional analysis</subject><subject>Disease</subject><subject>Homology</subject><subject>Topology</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mQwDijKT8rMS1fIz81MLlZISSxJVCjLTFTISCzKzc_LTFYoSC0qziwuSc0rUcjIz83PyU-v5GFgTUvMKU7lhdLcDMpuriHOHroFRfmFpanFJfFZ-aVFeUCpeCMLC0tzS3NzExNj4lQBAEVgNNA</recordid><startdate>20240420</startdate><enddate>20240420</enddate><creator>Gurnari, Davide</creator><creator>Guzmán-Sáenz, Aldo</creator><creator>Utro, Filippo</creator><creator>Bose, Aritra</creator><creator>Basu, Saugata</creator><creator>Parida, Laxmi</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240420</creationdate><title>Probing omics data via harmonic persistent homology</title><author>Gurnari, Davide ; Guzmán-Sáenz, Aldo ; Utro, Filippo ; Bose, Aritra ; Basu, Saugata ; Parida, Laxmi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_28897977443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Biomarkers</topic><topic>Data analysis</topic><topic>Dimensional analysis</topic><topic>Disease</topic><topic>Homology</topic><topic>Topology</topic><toplevel>online_resources</toplevel><creatorcontrib>Gurnari, Davide</creatorcontrib><creatorcontrib>Guzmán-Sáenz, Aldo</creatorcontrib><creatorcontrib>Utro, Filippo</creatorcontrib><creatorcontrib>Bose, Aritra</creatorcontrib><creatorcontrib>Basu, Saugata</creatorcontrib><creatorcontrib>Parida, Laxmi</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest - Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gurnari, Davide</au><au>Guzmán-Sáenz, Aldo</au><au>Utro, Filippo</au><au>Bose, Aritra</au><au>Basu, Saugata</au><au>Parida, Laxmi</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Probing omics data via harmonic persistent homology</atitle><jtitle>arXiv.org</jtitle><date>2024-04-20</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Identifying molecular signatures from complex disease patients with underlying symptomatic similarities is a significant challenge in the analysis of high dimensional multi-omics data. Topological data analysis (TDA) provides a way of extracting such information from the geometric structure of the data and identifying multiway higher-order relationships. Here, we propose an application of Harmonic persistent homology, which overcomes the limitations of ambiguous assignment of the topological information to the original elements in a representative topological cycle from the data. When applied to multi-omics data, this leads to the discovery of hidden patterns highlighting the relationships between different omic profiles, while allowing for common tasks in multi-omics analyses, such as disease subtyping, and most importantly biomarker identification for similar latent biological pathways that are associated with complex diseases. Our experiments on multiple cancer data show that harmonic persistent homology effectively dissects multi-omics data to identify biomarkers by detecting representative cycles predictive of disease subtypes.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-04 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2889797744 |
source | ProQuest - Publicly Available Content Database |
subjects | Biomarkers Data analysis Dimensional analysis Disease Homology Topology |
title | Probing omics data via harmonic persistent homology |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T13%3A20%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Probing%20omics%20data%20via%20harmonic%20persistent%20homology&rft.jtitle=arXiv.org&rft.au=Gurnari,%20Davide&rft.date=2024-04-20&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2889797744%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_28897977443%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2889797744&rft_id=info:pmid/&rfr_iscdi=true |