Loading…

Flexible Wearable Microfiber Respiratory Sensor Based on Microspheres Coupling

We propose a flexible wearable respiratory sensor based on microspheres coupling, where the sensing element is a microfiber embedded in a polydimethylsiloxane (PDMS) film doped with 5- \mu \text{m} -diameter silica microspheres. In this study, PDMS doped with microspheres was used to coat microfiber...

Full description

Saved in:
Bibliographic Details
Published in:IEEE sensors journal 2023-11, Vol.23 (22), p.27324-27330
Main Authors: Jiang, Chunlei, Dai, Penghui, Li, Xinru, Cong, Zhicheng, Dong, Taiji, Sun, Yu, Liu, Xiankun, Sui, Yuan, Chen, Peng, Yu, Xianli, Wang, Xiufang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c294t-71e88a32ad9216a42910cae6a27ed18667d4ab746d2db3da73c2b8794a5bd1de3
cites cdi_FETCH-LOGICAL-c294t-71e88a32ad9216a42910cae6a27ed18667d4ab746d2db3da73c2b8794a5bd1de3
container_end_page 27330
container_issue 22
container_start_page 27324
container_title IEEE sensors journal
container_volume 23
creator Jiang, Chunlei
Dai, Penghui
Li, Xinru
Cong, Zhicheng
Dong, Taiji
Sun, Yu
Liu, Xiankun
Sui, Yuan
Chen, Peng
Yu, Xianli
Wang, Xiufang
description We propose a flexible wearable respiratory sensor based on microspheres coupling, where the sensing element is a microfiber embedded in a polydimethylsiloxane (PDMS) film doped with 5- \mu \text{m} -diameter silica microspheres. In this study, PDMS doped with microspheres was used to coat microfibers for the first time, and the enhancement of the evanescent field on the surface of microfibers was observed. Theoretically and experimentally, it is found that the light transmitted in the optical fiber core is effectively dragged by the microsphere, which significantly enhances the evanescent field and thus improves the sensitivity of the sensing element. During the respiratory monitoring, the pressure generated by the respiratory airflow causes the sensing element to bend, and the self-mixing interference is used to detect the power change of reflected light to reconstruct the respiratory signal. The empirical findings demonstrate a peak in sensor sensitivity at a microsphere doping concentration of 0.1 g/mL, while a subsequent augmentation in microspheres doping concentration inversely correlates with sensor sensitivity. Notably, the sensor developed with a 0.1-g/mL microspheres doping concentration exhibits an exceptional capacity for continuous, real-time differentiation among diverse respiratory signals. This innovation is characterized by its elevated sensitivity and responsiveness, evidenced by an impressively short 28-ms response time. To validate the sensor's effectiveness, we employed the Bland-Altman statistical analysis test to assess the accuracy of respiration rate measurements using the collected data from the test subjects. The favorable outcomes we obtained offer a promising avenue for advancing research in the realm of noninvasive vital signs monitoring.
doi_str_mv 10.1109/JSEN.2023.3319078
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_2890105820</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10268866</ieee_id><sourcerecordid>2890105820</sourcerecordid><originalsourceid>FETCH-LOGICAL-c294t-71e88a32ad9216a42910cae6a27ed18667d4ab746d2db3da73c2b8794a5bd1de3</originalsourceid><addsrcrecordid>eNpNkMtOwzAQRS0EEqXwAUgsIrFO8dhJbC-hojxUikRBsLOceAquQhzsVqJ_T6J0wWru4tyZ0SHkHOgEgKqrx-XtYsIo4xPOQVEhD8gI8lymIDJ52GdO04yLj2NyEuOaUlAiFyOymNX468oak3c0wfThyVXBr1yJIXnB2LpgNj7skiU20YfkxkS0iW8GLLZfGDAmU79ta9d8npKjlakjnu3nmLzNbl-n9-n8-e5hej1PK6ayTSoApTScGasYFCZjCmhlsDBMoAVZFMJmphRZYZktuTWCV6yUQmUmLy1Y5GNyOextg__ZYtzotd-GpjupmVQUaC4Z7SgYqP7TGHCl2-C-TdhpoLrXpnttutem99q6zsXQcYj4j2eF7P7ifyh4aaM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2890105820</pqid></control><display><type>article</type><title>Flexible Wearable Microfiber Respiratory Sensor Based on Microspheres Coupling</title><source>IEEE Xplore (Online service)</source><creator>Jiang, Chunlei ; Dai, Penghui ; Li, Xinru ; Cong, Zhicheng ; Dong, Taiji ; Sun, Yu ; Liu, Xiankun ; Sui, Yuan ; Chen, Peng ; Yu, Xianli ; Wang, Xiufang</creator><creatorcontrib>Jiang, Chunlei ; Dai, Penghui ; Li, Xinru ; Cong, Zhicheng ; Dong, Taiji ; Sun, Yu ; Liu, Xiankun ; Sui, Yuan ; Chen, Peng ; Yu, Xianli ; Wang, Xiufang</creatorcontrib><description>We propose a flexible wearable respiratory sensor based on microspheres coupling, where the sensing element is a microfiber embedded in a polydimethylsiloxane (PDMS) film doped with 5-&lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;\mu \text{m} &lt;/tex-math&gt;&lt;/inline-formula&gt;-diameter silica microspheres. In this study, PDMS doped with microspheres was used to coat microfibers for the first time, and the enhancement of the evanescent field on the surface of microfibers was observed. Theoretically and experimentally, it is found that the light transmitted in the optical fiber core is effectively dragged by the microsphere, which significantly enhances the evanescent field and thus improves the sensitivity of the sensing element. During the respiratory monitoring, the pressure generated by the respiratory airflow causes the sensing element to bend, and the self-mixing interference is used to detect the power change of reflected light to reconstruct the respiratory signal. The empirical findings demonstrate a peak in sensor sensitivity at a microsphere doping concentration of 0.1 g/mL, while a subsequent augmentation in microspheres doping concentration inversely correlates with sensor sensitivity. Notably, the sensor developed with a 0.1-g/mL microspheres doping concentration exhibits an exceptional capacity for continuous, real-time differentiation among diverse respiratory signals. This innovation is characterized by its elevated sensitivity and responsiveness, evidenced by an impressively short 28-ms response time. To validate the sensor's effectiveness, we employed the Bland-Altman statistical analysis test to assess the accuracy of respiration rate measurements using the collected data from the test subjects. The favorable outcomes we obtained offer a promising avenue for advancing research in the realm of noninvasive vital signs monitoring.</description><identifier>ISSN: 1530-437X</identifier><identifier>EISSN: 1558-1748</identifier><identifier>DOI: 10.1109/JSEN.2023.3319078</identifier><identifier>CODEN: ISJEAZ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Air flow ; Coupling ; Diameters ; Doping ; Empirical analysis ; Evanescent field ; microfiber sensor ; Microfibers ; Microspheres ; microspheres coupling ; Monitoring ; Optical fiber sensors ; Optical fibers ; Optical films ; Optical surface waves ; Polydimethylsiloxane ; respiratory monitoring ; self-mixing interferometer ; Sensitivity ; Sensors ; Statistical analysis ; Wearable technology</subject><ispartof>IEEE sensors journal, 2023-11, Vol.23 (22), p.27324-27330</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c294t-71e88a32ad9216a42910cae6a27ed18667d4ab746d2db3da73c2b8794a5bd1de3</citedby><cites>FETCH-LOGICAL-c294t-71e88a32ad9216a42910cae6a27ed18667d4ab746d2db3da73c2b8794a5bd1de3</cites><orcidid>0000-0002-5012-5923 ; 0000-0003-2933-9860 ; 0000-0003-0172-0029 ; 0000-0002-9986-1921</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10268866$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Jiang, Chunlei</creatorcontrib><creatorcontrib>Dai, Penghui</creatorcontrib><creatorcontrib>Li, Xinru</creatorcontrib><creatorcontrib>Cong, Zhicheng</creatorcontrib><creatorcontrib>Dong, Taiji</creatorcontrib><creatorcontrib>Sun, Yu</creatorcontrib><creatorcontrib>Liu, Xiankun</creatorcontrib><creatorcontrib>Sui, Yuan</creatorcontrib><creatorcontrib>Chen, Peng</creatorcontrib><creatorcontrib>Yu, Xianli</creatorcontrib><creatorcontrib>Wang, Xiufang</creatorcontrib><title>Flexible Wearable Microfiber Respiratory Sensor Based on Microspheres Coupling</title><title>IEEE sensors journal</title><addtitle>JSEN</addtitle><description>We propose a flexible wearable respiratory sensor based on microspheres coupling, where the sensing element is a microfiber embedded in a polydimethylsiloxane (PDMS) film doped with 5-&lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;\mu \text{m} &lt;/tex-math&gt;&lt;/inline-formula&gt;-diameter silica microspheres. In this study, PDMS doped with microspheres was used to coat microfibers for the first time, and the enhancement of the evanescent field on the surface of microfibers was observed. Theoretically and experimentally, it is found that the light transmitted in the optical fiber core is effectively dragged by the microsphere, which significantly enhances the evanescent field and thus improves the sensitivity of the sensing element. During the respiratory monitoring, the pressure generated by the respiratory airflow causes the sensing element to bend, and the self-mixing interference is used to detect the power change of reflected light to reconstruct the respiratory signal. The empirical findings demonstrate a peak in sensor sensitivity at a microsphere doping concentration of 0.1 g/mL, while a subsequent augmentation in microspheres doping concentration inversely correlates with sensor sensitivity. Notably, the sensor developed with a 0.1-g/mL microspheres doping concentration exhibits an exceptional capacity for continuous, real-time differentiation among diverse respiratory signals. This innovation is characterized by its elevated sensitivity and responsiveness, evidenced by an impressively short 28-ms response time. To validate the sensor's effectiveness, we employed the Bland-Altman statistical analysis test to assess the accuracy of respiration rate measurements using the collected data from the test subjects. The favorable outcomes we obtained offer a promising avenue for advancing research in the realm of noninvasive vital signs monitoring.</description><subject>Air flow</subject><subject>Coupling</subject><subject>Diameters</subject><subject>Doping</subject><subject>Empirical analysis</subject><subject>Evanescent field</subject><subject>microfiber sensor</subject><subject>Microfibers</subject><subject>Microspheres</subject><subject>microspheres coupling</subject><subject>Monitoring</subject><subject>Optical fiber sensors</subject><subject>Optical fibers</subject><subject>Optical films</subject><subject>Optical surface waves</subject><subject>Polydimethylsiloxane</subject><subject>respiratory monitoring</subject><subject>self-mixing interferometer</subject><subject>Sensitivity</subject><subject>Sensors</subject><subject>Statistical analysis</subject><subject>Wearable technology</subject><issn>1530-437X</issn><issn>1558-1748</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpNkMtOwzAQRS0EEqXwAUgsIrFO8dhJbC-hojxUikRBsLOceAquQhzsVqJ_T6J0wWru4tyZ0SHkHOgEgKqrx-XtYsIo4xPOQVEhD8gI8lymIDJ52GdO04yLj2NyEuOaUlAiFyOymNX468oak3c0wfThyVXBr1yJIXnB2LpgNj7skiU20YfkxkS0iW8GLLZfGDAmU79ta9d8npKjlakjnu3nmLzNbl-n9-n8-e5hej1PK6ayTSoApTScGasYFCZjCmhlsDBMoAVZFMJmphRZYZktuTWCV6yUQmUmLy1Y5GNyOextg__ZYtzotd-GpjupmVQUaC4Z7SgYqP7TGHCl2-C-TdhpoLrXpnttutem99q6zsXQcYj4j2eF7P7ifyh4aaM</recordid><startdate>20231115</startdate><enddate>20231115</enddate><creator>Jiang, Chunlei</creator><creator>Dai, Penghui</creator><creator>Li, Xinru</creator><creator>Cong, Zhicheng</creator><creator>Dong, Taiji</creator><creator>Sun, Yu</creator><creator>Liu, Xiankun</creator><creator>Sui, Yuan</creator><creator>Chen, Peng</creator><creator>Yu, Xianli</creator><creator>Wang, Xiufang</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-5012-5923</orcidid><orcidid>https://orcid.org/0000-0003-2933-9860</orcidid><orcidid>https://orcid.org/0000-0003-0172-0029</orcidid><orcidid>https://orcid.org/0000-0002-9986-1921</orcidid></search><sort><creationdate>20231115</creationdate><title>Flexible Wearable Microfiber Respiratory Sensor Based on Microspheres Coupling</title><author>Jiang, Chunlei ; Dai, Penghui ; Li, Xinru ; Cong, Zhicheng ; Dong, Taiji ; Sun, Yu ; Liu, Xiankun ; Sui, Yuan ; Chen, Peng ; Yu, Xianli ; Wang, Xiufang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c294t-71e88a32ad9216a42910cae6a27ed18667d4ab746d2db3da73c2b8794a5bd1de3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Air flow</topic><topic>Coupling</topic><topic>Diameters</topic><topic>Doping</topic><topic>Empirical analysis</topic><topic>Evanescent field</topic><topic>microfiber sensor</topic><topic>Microfibers</topic><topic>Microspheres</topic><topic>microspheres coupling</topic><topic>Monitoring</topic><topic>Optical fiber sensors</topic><topic>Optical fibers</topic><topic>Optical films</topic><topic>Optical surface waves</topic><topic>Polydimethylsiloxane</topic><topic>respiratory monitoring</topic><topic>self-mixing interferometer</topic><topic>Sensitivity</topic><topic>Sensors</topic><topic>Statistical analysis</topic><topic>Wearable technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jiang, Chunlei</creatorcontrib><creatorcontrib>Dai, Penghui</creatorcontrib><creatorcontrib>Li, Xinru</creatorcontrib><creatorcontrib>Cong, Zhicheng</creatorcontrib><creatorcontrib>Dong, Taiji</creatorcontrib><creatorcontrib>Sun, Yu</creatorcontrib><creatorcontrib>Liu, Xiankun</creatorcontrib><creatorcontrib>Sui, Yuan</creatorcontrib><creatorcontrib>Chen, Peng</creatorcontrib><creatorcontrib>Yu, Xianli</creatorcontrib><creatorcontrib>Wang, Xiufang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE sensors journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jiang, Chunlei</au><au>Dai, Penghui</au><au>Li, Xinru</au><au>Cong, Zhicheng</au><au>Dong, Taiji</au><au>Sun, Yu</au><au>Liu, Xiankun</au><au>Sui, Yuan</au><au>Chen, Peng</au><au>Yu, Xianli</au><au>Wang, Xiufang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Flexible Wearable Microfiber Respiratory Sensor Based on Microspheres Coupling</atitle><jtitle>IEEE sensors journal</jtitle><stitle>JSEN</stitle><date>2023-11-15</date><risdate>2023</risdate><volume>23</volume><issue>22</issue><spage>27324</spage><epage>27330</epage><pages>27324-27330</pages><issn>1530-437X</issn><eissn>1558-1748</eissn><coden>ISJEAZ</coden><abstract>We propose a flexible wearable respiratory sensor based on microspheres coupling, where the sensing element is a microfiber embedded in a polydimethylsiloxane (PDMS) film doped with 5-&lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;\mu \text{m} &lt;/tex-math&gt;&lt;/inline-formula&gt;-diameter silica microspheres. In this study, PDMS doped with microspheres was used to coat microfibers for the first time, and the enhancement of the evanescent field on the surface of microfibers was observed. Theoretically and experimentally, it is found that the light transmitted in the optical fiber core is effectively dragged by the microsphere, which significantly enhances the evanescent field and thus improves the sensitivity of the sensing element. During the respiratory monitoring, the pressure generated by the respiratory airflow causes the sensing element to bend, and the self-mixing interference is used to detect the power change of reflected light to reconstruct the respiratory signal. The empirical findings demonstrate a peak in sensor sensitivity at a microsphere doping concentration of 0.1 g/mL, while a subsequent augmentation in microspheres doping concentration inversely correlates with sensor sensitivity. Notably, the sensor developed with a 0.1-g/mL microspheres doping concentration exhibits an exceptional capacity for continuous, real-time differentiation among diverse respiratory signals. This innovation is characterized by its elevated sensitivity and responsiveness, evidenced by an impressively short 28-ms response time. To validate the sensor's effectiveness, we employed the Bland-Altman statistical analysis test to assess the accuracy of respiration rate measurements using the collected data from the test subjects. The favorable outcomes we obtained offer a promising avenue for advancing research in the realm of noninvasive vital signs monitoring.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSEN.2023.3319078</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-5012-5923</orcidid><orcidid>https://orcid.org/0000-0003-2933-9860</orcidid><orcidid>https://orcid.org/0000-0003-0172-0029</orcidid><orcidid>https://orcid.org/0000-0002-9986-1921</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1530-437X
ispartof IEEE sensors journal, 2023-11, Vol.23 (22), p.27324-27330
issn 1530-437X
1558-1748
language eng
recordid cdi_proquest_journals_2890105820
source IEEE Xplore (Online service)
subjects Air flow
Coupling
Diameters
Doping
Empirical analysis
Evanescent field
microfiber sensor
Microfibers
Microspheres
microspheres coupling
Monitoring
Optical fiber sensors
Optical fibers
Optical films
Optical surface waves
Polydimethylsiloxane
respiratory monitoring
self-mixing interferometer
Sensitivity
Sensors
Statistical analysis
Wearable technology
title Flexible Wearable Microfiber Respiratory Sensor Based on Microspheres Coupling
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T07%3A55%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Flexible%20Wearable%20Microfiber%20Respiratory%20Sensor%20Based%20on%20Microspheres%20Coupling&rft.jtitle=IEEE%20sensors%20journal&rft.au=Jiang,%20Chunlei&rft.date=2023-11-15&rft.volume=23&rft.issue=22&rft.spage=27324&rft.epage=27330&rft.pages=27324-27330&rft.issn=1530-437X&rft.eissn=1558-1748&rft.coden=ISJEAZ&rft_id=info:doi/10.1109/JSEN.2023.3319078&rft_dat=%3Cproquest_ieee_%3E2890105820%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c294t-71e88a32ad9216a42910cae6a27ed18667d4ab746d2db3da73c2b8794a5bd1de3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2890105820&rft_id=info:pmid/&rft_ieee_id=10268866&rfr_iscdi=true